Chemical compositions

Valentini, S., Barnaba, F., Bernardoni, V., Calzolai, G., Costabile, F., Di Liberto, L., et al. (2020). Classifying aerosol particles through the combination of optical and physical-chemical properties: Results from a wintertime campaign in Rome (Italy). Atmospheric Research. http://doi.org/10.1016/j.atmosres.2019.104799
Ferrero, L., Ritter, C., Cappelletti, D., Moroni, B., Mocnik, G., Mazzola, M., et al. (2019). Aerosol optical properties in the Arctic: The role of aerosol chemistry and dust composition in a closure experiment between Lidar and tethered balloon vertical profiles. Science Of The Total Environment. http://doi.org/10.1016/j.scitotenv.2019.05.399
Moroni, B., Castellini, S., Crocchianti, S., Piazzalunga, A., Fermo, P., Scardazza, F., & Cappelletti, D. (2015). Ground-based measurements of long-range transported aerosol at the rural regional background site of Monte Martano (Central Italy). Atmospheric Research. http://doi.org/10.1016/j.atmosres.2014.11.021
Cesari, D., Donateo, A., Conte, M., & Contini, D. (2016). Inter-comparison of source apportionment of PM10 using PMF and CMB in three sites nearby an industrial area in central Italy. Atmospheric Research. http://doi.org/10.1016/j.atmosres.2016.08.003
Contini, D., Cesari, D., Conte, M., & Donateo, A. (2016). Application of PMF and CMB receptor models for the evaluation of the contribution of a large coal-fired power plant to PM10 concentrations. Science Of The Total Environment. http://doi.org/10.1016/j.scitotenv.2016.04.031