dispersion

Bisignano, A., Ferrero, E., & Alessandrini, S. (2019). A Lagrangian dispersion model with a stochastic equation for the temperature fluctuations. International Journal Of Environment And Pollution. http://doi.org/10.1504/IJEP.2019.103747
Gasbarra, D., Toscano, P., Famulari, D., Finardi, S., Di Tommasi, P., Zaldei, A., et al. (2019). Locating and quantifying multiple landfills methane emissions using aircraft data. Environmental Pollution. http://doi.org/10.1016/j.envpol.2019.112987
Ferrero, E., Manor, A., Mortarini, L., & Oettl, D. (2020). Concentration fluctuations and odor dispersion in lagrangian models. Atmosphere. http://doi.org/10.3390/ATMOS11010027
Ielpo, P., Taurino, M. R., Buccolieri, R., Placentino, C. M., Gallone, F., Ancona, V., & Di Sabatino, S. (2018). Polycyclic aromatic hydrocarbons in a bakery indoor air: trends, dynamics, and dispersion. Environmental Science And Pollution Research. http://doi.org/10.1007/s11356-018-1513-5
Tinarelli, G. L., & Castelli, T. (2019). Assessment of the Sensitivity to the Input Conditions with a Lagrangian Particle Dispersion Model in the UDINEE Project. Boundary-Layer Meteorology. http://doi.org/10.1007/s10546-018-0413-z
Barreto, A., Román, R., Cuevas, E., Pérez-Ramírez, D., Berjón, A. J., Kouremeti, N., et al. (2019). Evaluation of night-time aerosols measurements and lunar irradiance models in the frame of the first multi-instrument nocturnal intercomparison campaign. Atmospheric Environment. http://doi.org/10.1016/j.atmosenv.2019.01.006
Aloisi, I., Del Duca, S., De Nuntiis, P., Maray, A. M. V., Mandrioli, P., Gutiérrez, P., & Fernández-González, D. (2018). Behavior of profilins in the atmosphere and in vitro, and their relationship with the performance of airborne pollen. Atmospheric Environment. http://doi.org/10.1016/j.atmosenv.2018.01.051
Castelli, T., Armand, P., Tinarelli, G., Duchenne, C., & Nibart, M. (2018). Validation of a Lagrangian particle dispersion model with wind tunnel and field experiments in urban environment. Atmospheric Environment. http://doi.org/10.1016/j.atmosenv.2018.08.045
Contini, D., Cesari, D., Conte, M., & Donateo, A. (2016). Application of PMF and CMB receptor models for the evaluation of the contribution of a large coal-fired power plant to PM10 concentrations. Science Of The Total Environment. http://doi.org/10.1016/j.scitotenv.2016.04.031
Contini, D., Cesari, D., Conte, M., & Donateo, A. (2016). Application of PMF and CMB receptor models for the evaluation of the contribution of a large coal-fired power plant to PM10 concentrations. Science Of The Total Environment. http://doi.org/10.1016/j.scitotenv.2016.04.031