thermal conductivity

Sozzi, R., Casasanta, G., Ciardini, V., Finardi, S., Petenko, I., Cecilia, A., & Argentini, S. (2020). Surface and aerodynamic parameters estimation for urban and rural areas. Atmosphere. http://doi.org/10.3390/atmos11020147
Quaggiotto, D., Zarrella, A., Emmi, G., De Carli, M., Pockelé, L., Vercruysse, J., et al. (2019). Simulation-based comparison between the thermal behavior of coaxial and double u-tube borehole heat exchangers. Energies. http://doi.org/10.3390/en12122321
Santa, D., Galgaro, A., Sassi, R., Cultrera, M., Scotton, P., Mueller, J., et al. (2020). An updated ground thermal properties database for GSHP applications. Geothermics. http://doi.org/10.1016/j.geothermics.2019.101758
Santa, D., Galgaro, A., Sassi, R., Cultrera, M., Scotton, P., Mueller, J., et al. (2020). An updated ground thermal properties database for GSHP applications. Geothermics. http://doi.org/10.1016/j.geothermics.2019.101758
Giosuè, C., Mobili, A., Di Perna, C., & Tittarelli, F. (2019). Performance of lightweight cement-based and alkali-activated mortars exposed to high-temperature. Construction And Building Materials. http://doi.org/10.1016/j.conbuildmat.2019.05.193
Giosuè, C., Yu, Q. L., Ruello, M. L., Tittarelli, F., & Brouwers, H. J. H. (2018). Effect of pore structure on the performance of photocatalytic lightweight lime-based finishing mortar. Construction And Building Materials. http://doi.org/10.1016/j.conbuildmat.2018.03.106