oxidation

Hong, S. -B., Yoon, Y. J., Becagli, S., Gim, Y., Chambers, S. D., Park, K. -T., et al. (2020). Seasonality of aerosol chemical composition at King Sejong Station (Antarctic Peninsula) in 2013. Atmospheric Environment. http://doi.org/10.1016/j.atmosenv.2019.117185
Costabile, F., Gualtieri, M., Canepari, S., Tranfo, G., Consales, C., Grollino, M. G., et al. (2019). Evidence of association between aerosol properties and in-vitro cellular oxidative response to PM1, oxidative potential of PM2.5, a biomarker of RNA oxidation, and its dependency on combustion sources. Atmospheric Environment. http://doi.org/10.1016/j.atmosenv.2019.06.023
Feltracco, M., Barbaro, E., Contini, D., Zangrando, R., Toscano, G., Battistel, D., et al. (2018). Photo-oxidation products of Α-pinene in coarse, fine and ultrafine aerosol: A new high sensitive HPLC-MS/MS method. Atmospheric Environment. http://doi.org/10.1016/j.atmosenv.2018.02.052
Sullivan, A. P., Hodas, N., Turpin, B. J., Skog, K., Keutsch, F. N., Gilardoni, S., et al. (2016). Evidence for ambient dark aqueous SOA formation in the Po Valley, Italy. Atmospheric Chemistry And Physics. http://doi.org/10.5194/acp-16-8095-2016
Chirizzi, D., Cesari, D., Guascito, M. R., Dinoi, A., Giotta, L., Donateo, A., & Contini, D. (2017). Influence of Saharan dust outbreaks and carbon content on oxidative potential of water-soluble fractions of PM2.5 and PM10. Atmospheric Environment. http://doi.org/10.1016/j.atmosenv.2017.05.021