F. Marra

First name
Last name
Araujo, D. S. A., Marra, F., Ali, H., Fowler, H. J., & Nikolopoulos, E. I. (2023). Relation between storm characteristics and extreme precipitation statistics over CONUS. Advances In Water Resources, 178. http://doi.org/10.1016/j.advwatres.2023.104497
Shmilovitz, Y., Marra, F., Wei, H., Argaman, E., Goodrich, D., Assouline, S., & Morin, E. (2023). Assessing the controlling factors on watershed soil erosion during intense rainstorm events using radar rainfall and process-based modeling. Catena, 231. http://doi.org/10.1016/j.catena.2023.107282
Hu, L., Nikolopoulos, E. I., Marra, F., & Anagnostou, E. N. (2023). Toward an improved estimation of flood frequency statistics from simulated flows. Journal Of Flood Risk Management, 16(2). http://doi.org/10.1111/jfr3.12891
Marra, F., Amponsah, W., & Papalexiou, S. M. (2023). Non-asymptotic Weibull tails explain the statistics of extreme daily precipitation. Advances In Water Resources, 173. http://doi.org/10.1016/j.advwatres.2023.104388
Steger, S., Moreno, M., Crespi, A., Zellner, P. J., Gariano, S. L., Brunetti, M. T., et al. (2023). Deciphering seasonal effects of triggering and preparatory precipitation for improved shallow landslide prediction using generalized additive mixed models. Natural Hazards And Earth System Sciences, 23(4), 1483-1506, . http://doi.org/10.5194/nhess-23-1483-2023
Siman-Tov, S., & Marra, F. (2023). Antecedent rainfall as a critical factor for the triggering of debris flows in arid regions. Natural Hazards And Earth System Sciences, 23(3), 1079-1093, . http://doi.org/10.5194/nhess-23-1079-2023
Peleg, N., Torelló-Sentelles, H., Mariéthoz, G., Benoit, L., Leitão, J. P., & Marra, F. (2023). Brief communication: The potential use of low-cost acoustic sensors to detect rainfall for short-term urban flood warnings. Natural Hazards And Earth System Sciences, 23(3), 1233-1240, . http://doi.org/10.5194/nhess-23-1233-2023
Hochman, A., Plotnik, T., Marra, F., Shehter, E. -R., Raveh-Rubin, S., & Magaritz-Ronen, L. (2023). The sources of extreme precipitation predictability; the case of the ‘Wet’ Red Sea Trough. Weather And Climate Extremes, 40. http://doi.org/10.1016/j.wace.2023.100564
Dallan, E., Marra, F., Fosser, G., Marani, M., Formetta, G., Schär, C., & Borga, M. (2023). How well does a convection-permitting regional climate model represent the reverse orographic effect of extreme hourly precipitation?. Hydrology And Earth System Sciences, 27(5), 1133-1149, . http://doi.org/10.5194/hess-27-1133-2023
Armon, M., Marra, F., Enzel, Y., Rostkier-Edelstein, D., Garfinkel, C. I., Adam, O., et al. (2022). Reduced Rainfall in Future Heavy Precipitation Events Related to Contracted Rain Area Despite Increased Rain Rate. Earth's Future, 10(1). http://doi.org/10.1029/2021EF002397