Greenhouse gases

Naitza, L., Cristofanelli, P., Marinoni, A., Calzolari, F., Roccato, F., Busetto, M., et al. (2020). Increasing the maturity of measurements of essential climate variables (ECVs) at Italian atmospheric WMO/GAW observatories by implementing automated data elaboration chains. Computers And Geosciences. http://doi.org/10.1016/j.cageo.2020.104432
Bobbo, S., Fedele, L., Curcio, M., Bet, A., De Carli, M., Emmi, G., et al. (2019). Energetic and exergetic analysis of low global warming potential refrigerants as substitutes for R410A in ground source heat pumps. Energies. http://doi.org/10.3390/en12183538
Lefebvre, G., Redmond, L., Germain, C., Palazzi, E., Terzago, S., Willm, L., & Poulin, B. (2019). Predicting the vulnerability of seasonally-flooded wetlands to climate change across the Mediterranean Basin. Science Of The Total Environment. http://doi.org/10.1016/j.scitotenv.2019.07.263
Graziosi, F., Arduini, J., Furlani, F., Giostra, U., Kuijpers, L. J. M., Montzka, S. A., et al. (2015). European emissions of HCFC-22 based on eleven years of high frequency atmospheric measurements and a Bayesian inversion method. Atmospheric Environment. http://doi.org/10.1016/j.atmosenv.2015.04.042
Graziosi, F., Arduini, J., Furlani, F., Giostra, U., Kuijpers, L. J. M., Montzka, S. A., et al. (2015). European emissions of HCFC-22 based on eleven years of high frequency atmospheric measurements and a Bayesian inversion method. Atmospheric Environment. http://doi.org/10.1016/j.atmosenv.2015.04.042