

10th International Conference on Meteorology and Climatology of the Mediterranean (MetMed)

Toulouse (France), 19-21 May 2025

Heavy precipitation over northern Italy and atmospheric rivers in the Mediterranean

Silvio Davolio

Department of Earth Science "A. Desio", University of Milan

Institute of Atmospheric Sciences and Climate, National Research Council (CNR-ISAC)

I. Sala¹, A. Comunian¹, D. Mastrangelo², Sante Laviola², G. Monte², B. Tomassetti³, A. Lombardi³, M. Verdecchia³, F. Grazzini⁴, V. Colaiuda⁵ Acknowledgments: M. M. Miglietta², V. Levizzani², M. Vercellino

¹Univ. Milan; ²CNR - ISAC, Bologna; ³CETEMPS/Univ. L'Aquila; ⁴ARPAE; ⁵Regional Civil Protection Agency - Abruzzo Region

ATMOSPHERIC RIVERS

Guan & Waliser, 2015, JGR

S. Davolio Heavy precipitation over northern Italy and atmosphe

ATMOSPHERIC RIVERS OVER EUROPE

North Atlantic: Stohl et al., 2008; Knippertz and Wernli, 2010; Ramos et al. 2016; Dacre et al., 2015; Brands et al., 2017

Scandinavian Peninsula: Sodemann and Stohl, 2013; Benedict et al., 2019

Iberian Peninsula: Liberato et al., 2012; Ramos et al., 2015; Eiras-Barca et al., 2016

Inland penetration in Central Europe: Rossler et al., 2014; Inoita et al., 2020

UK e France: Lavers et al., 2011; Lavers and Villarini, 2013; Lu et al., 2013; Browning, 2018; Doiteau et al., 2021

AR LANDFALL

Gimeno et al., 2016, Annu. Rev. Env. Res.

Ministero dell'Università e della Ricerca

AR & PRECIPITATION - Europe

- In Western Europe ARs are responsible for 20-30% of all precipitation

Strong seasonality (storm track)

Increasing interest in extreme events

- Strong relationship between ARs and annual maximum precipitation days in W-Europe coasts
- The strongest AR-AM connection is found in mountainous areas, mainly in fall and winter
- Striking inland impacts (more inland penetration compared to the US)

AR in the W-MEDITERRANEAN

Suggesting the presence of an AR during the 1966 Florence flood

Krichak et al., 2016 Malguzzi et al., 2006 Buzzi et al., 2014

Francis et al, 2022

Finanziato dall'Unione europea

THE TWO "CENTURY FLOODS"

1966 FLOOD

2018 "VAIA" STORM

Exploring Atmospheric Rivers in the Mediterranean and their connection with EXtreme hydrometeorological events over Italy: observation, modelling and impacts

https://sites.google.com/view/armexproject

AIM:

- conduct a climatological analysis
- define AR characteristics and their impact in the mesoscale mechanisms of heavy precipitation
- reveal the hydrological impact of landfalling AR in several basins of different characteristics

TOWARDS A CLIMATOLOGY: ATMOSPHERIC RIVER DETECTION

Guan & Waliser (2015) algorithm with some adaptation for the Mediterranean

IVT Integrated Vapour Transport

- i) IVT thresholds: IVT > 85-percentile IVT > 250 kgm⁻¹s⁻¹
- i) length > 2000 km
- ii) aspect ratio > 2

AR Selection:

Target area: North/Central Italy

Origin area: outside the Mediterranean

 $IVT_v > 0$

Duration: at least 12 hours

MAX IVT over the sea, close to the target area

DATASETS:

ERA5 reanalysis (IVT) and ArCIS (1961-2024)

357 AR identified, on average 5.6 AR events per year

AR INTENSITY & DURATION

AR CATEGORIES AND SEASONAL DISTRIBUTION

Ralph et al., 2019

AR vs PRECIPITATION

ITALIAN CIVIL PROTECTION WARNING AREAS

Grazzini et al., 2019, 2021

- Daily precipitation aggregated over 94 warning-areas
- Mean area extension 1750 km²
- Extreme Precipitation Event (EPE): day with daily precipitation greater than 99th percentile (wet days only) across one or more warning areas

CATEGORY	N. of AR	N. of ARs associated with EPE	% of ARs associated with EPE
WEAK AR	55	28	51%
AR1	118	79	67%
AR2	111	84	76%
AR3	50	40	80%
AR4	20	17	85%
AR5	3	3	100%

Top 10 EPE associated with an AR

EXPLORING PREDICTABILITY OF EPE and AR at MONTHLY TIME SCALE

Vaia storm event

25-31 Oct 2018, weekly anomalies

- ERA5: z500 (gpm)

- CPC: precipitation (mm/d)

- reference climate 1998–2017 (20 y)

ECMWF ensemble forecast

- initialized: 11 Oct 2018 (operational)
- 51 members, perturbed
- reference climate: 11-member ensemble reforecasts, 1998–2017 (20 y)

CNR-ISAC ensemble forecast

- initialized: 11 Oct 2018 (hindcast, ERA5)
- 41 members, lagged/perturbed
- reference climate: 8-member ensemble reforecasts, 2001–2020 (2018 removed, 19 y) 40N

CONCLUSIONS

- Climatology: relevance of AR and connection with EPE
- Case study approach:
 - The AR may turn an ordinary intense rainfall event into a devastating flood
 - Mechanism of orographic precipitation
 - Local hydro-meteo impacts, forecasting at different time-scales

FUTURE PERSPECTIVES

- Connecting EPE to AR
- · Exploring mechanisms associated with convection
- Extend the study to other Med areas

