Evidence of Clear-Sky Daylight Whitening: Are we already conducting geoengineering?

Chuck Long, Jim Barnard, Connor Flynn
Original US Brightening paper:

- Used data from ARM SGP and 6 SURFRAD sites

- Showed:
 - All-sky brightening average of 8 Wm$^{-2}$/decade
 - All-sky brightening associated with average 2.3%/decade decrease in daylight cloud amount
US Sites All-Sky Brightening

Average = +8 Wm$^{-2}$/decade

- Fort Peck, MT
- Boulder, CO
- Desert Rock, NV
- Bondville, IL
- Goodwin Creek, MS
- Penn State, PA
- ARM SGP

Pacific Northwest National Laboratory
Proudly Operated by Battelle Since 1965
Correlation of All-Sky Brightening with Sky Cover Anomalies

US Sites Seasonal Sky Cover vs All-sky SWdn Anomalies

Slope = -13.5 Wm\(^{-2}\)/10\% Scv

\(R^2 = 0.62 \)
US Clear-Sky Brightening

- US average total SW increase of 4.6 Wm$^{-2}$/decade
 - Not correlated with aerosol optical depth changes!
- Direct SW did not change over the years
- Change in clear-sky total SW was virtually all in the diffuse SW

- This is NOT what is expected for aerosol direct effect!
 - Expect increase in direct SW, decrease in diffuse SW

- What’s going on?
Clear-Sky Total Brightening

US Sites Yearly Clear-Sky SWdn Anomalies

Clear-sky SWdn slope: 4.6 Wm²/decade
Correlation of Aerosol versus Clear-sky SW

US Sites Seasonal AOD vs Clear-sky SWdn Anomalies

Slope = -40 Wm\(^{-2}\)/unit_AOD

\(R^2 = 0.05\)
The clear-sky total SW increased

Documented aerosol optical depths decreased

But clear-sky direct and diffuse components did not change as expected for direct aerosol effect…
Why is the sky blue and a cloud white?

Molecular scattering

Blue light scattered
4X more than red light

Sky Imager classification of cloud and cloud-free pixels uses a ratio of red over blue:
Ratio is small for blue sky, but approaches 1 for cloud.
So the red/blue ratio increases for increasing “whiteness”…
Scattering phase function

Molecular Scattering

Backward direction | Forward direction

Large Particle Scattering

When there is large particulate matter in the air, the forward lobe of Mie scattering is dominant. Since it is not very wavelength dependent, we see a white glare around the sun.

Rayleigh Scattering

From overhead, the Rayleigh scattering is dominant, the Mie scattered intensity being projected forward. Since Rayleigh scattering strongly favors short wavelengths, we see a blue sky.

Mie Scattering
The Hypothesis

- Decreasing aerosol optical depth increased downwelling clear-sky SW.
- But at the same time there was a shift from small mode somewhat absorbing scatterers to a large mode mostly non-absorbing scatterers.
- This resulted in the increased direct SW being scattered out of the direct component into the diffuse.
 - Large mode scattering still in forward direction, but less backscatter.

Also scattering more of the longer wavelengths!
So where did the large mode come from?

- Radiative transfer modeling shows the hypothesis is feasible for small ice crystals loading increasing while aerosols decreasing.
- Records show that US commercial air traffic increased over the study period.
- Jet exhaust includes aerosol particles and water vapor → contrails → moistening → contrail cirrus → cirrus haze.
Clear-sky Whitening

- We allow some amount of condensed water in the column still to be called “clear-sky”
 - Dupont et al. (2008) show up to 0.15-0.2 optical depth of typically ice haze to be classified as “clear-sky” in the traditional definition
- So the “clear-sky” brightening results could be due to a “whitening” of the conditions we classify as “cloud-free”
- Indicated in Long et al. (2009) by increase in the diffuse over direct ratio which is related to increased turbidity

- How can we test this?

Diffuse Over Direct SW ratio

US Sites Yearly Clear-sky Diffuse/Direct Ratio Anomalies

Clear-sky Dif/Dir slope: 0.021/decade

Year
MFRSR diffuse spectral SW Measurements

- The ARM and SURFRAD sites all have collocated Multi-Frequency Rotating Shadowband Radiometers (MFRSRs)
- Include spectral channels at 415, 500, 615, 673, 870, 940 nm
- Use 870 nm as “red”, and 415 nm as “blue”
- Use detected clear-sky periods from RFA and fit functions for the MFRSR spectral channels, interpolate coefficients for cloudy periods same as broadband in original study
- Produce yearly averages of clear-sky diffuse 870 nm and 415 nm using same averaging methodology as original study
- If clear-sky whitening is occurring, there should be an increasing tendency in the 870/415 nm ratio through the study years
Yearly Average 870/415 nm Ratio

Yearly Avg Ratio of 870/415 nm Clear-Sky MFR Diffuse Irradiance

\[y = 0.0011x + 0.151 \]

\[R^2 = 0.362 \]

95% Conf Level Slope Interval: 0.0003, 0.0019
Summary

- Long et al study showed increasing clear-sky SW over US
- Augustine et al. showed decreasing aerosol optical depths during same period
- However examination of clear-sky direct and diffuse SW components did not behave as expected for aerosol direct effects
 - Direct SW didn’t change appreciably
 - The increase in total SW was in the diffuse SW component
- The above is possible if an increase in large mode scatterers under “clear skies” at same time as decrease in “dry” aerosol loading
- Tendency of dif/dir and 870/415 nm ratios compatible with hypothesis
- Increased “ice haze” from increased jet air traffic?

Thank You…

Chuck.Long@pnnl.gov
Ice crystals are not spherical...