GEO-KOMPSAT-2A Precipitation Retrieval Algorithm: Status and Ongoing Works

Dong-Bin Shin, Damwon So, Dong-Cheol Kim*

Department of Atmospheric Sciences, Yonsei University, Seoul, Korea
atmcheol@gmail.com*

Introduction
- Korea's second geostationary satellite, GEO-KOMPSAT-2A (GK-2A), is planned to be launched in Nov. 2018.
- The Advanced Meteorological Imager (AMI) onboard the GK-2A satellite has 16 channels.
- A precipitation retrieval algorithm has been developed for the Advanced Meteorological Imager (AMI) onboard the GK-2A, the second Korea's geostationary satellite.
- Channels used in the algorithm are shaded (3 IRs ± 2 WVs).
- Requirement accuracy: Bias 9 mm/h at rainfall rate 10 mm/h.

Algorithm strategy

Well-known assumption in IR-based precipitation algorithms:

Cloud top temperatures are assumed to be associated with the surface rainfalls.

Problem in rainfall retrievals:
- Large variability of TB at the same rain rate from all types of precipitating clouds
- Using the brightness temperature differences (BTDs) between IR channels the algorithm discriminates five types of precipitating clouds:
 - one shallow and four non-shallow types.
- In addition to the separation of cloud types in the databases, the algorithm also uses databases classified by latitudinal bands.
- The separation of database based on latitudes may have an effect of distinguishing the cloud types that can occur regionally.
- The a-priori databases are thus classified with 20 different categories.

Retrieval example
- An RGB image taken from AHI on 03 July 2017 and a map of AHI Rain rates for the same granule (Typhoon - NAMADOL).
- The GK-2A-RR algorithm can be calculated in real time for the global or restricted area.

Validation
1) Cloud Types
- Validations for rainfall rates retrieved from five different cloud types are performed.
- The results show that rainfall rates retrieved from non-shallow-taller-colder cloud type have the best validation statistics while shallow cloud type shows the lowest validation statistics.

2) Accuracy of retrieved rainfall rate
- AHI vs TRMM
 - Comparison of similarity values in a certain space scale (10 km).
 - CDFs of the errors of the retrieved rainfall rate of 10 mm/h based on pixel-to-pixel matching (left) and the Fuzzy method (right). Black solid line indicates the point where CDF (%) is 68%.

Summary and ongoing works
- **Operational Algorithms for precipitation products have been developed for the AMI onboard the GK-2A.**
 - The products include a primary rainfall product (RR) for 3-h forecast.
 - The rain rate algorithm is characterized by a-priori DBs classified five rain cloud types (Shallow, Non-shallow: tall/colder; cold/colder) and five latitude bands (total 20 DBs).
 - Comparisons with various validation dataset (DPR, GMI, GOES-R, etc) showed that the algorithm meets the designated accuracy for the AMI operation.
- **Ongoing works.**
 - Preparing for IOT operations.
 - Calibration to AMI including the adjustment of thresholds and LUT constants
 - Extension of a-priori DBs
 - Minor adjustments to improve the accuracy of the RR algorithms.
 - Including and/or referring to the other GK-2A cloud products to improve the false alarm and the probability of detection in the RR algorithm

Algorithm Flowchart and Data

A-priori DBs
- IR TBs/MW RRs observations
 - Construction of a-priori DBs: Static DBs
 - Four latitudinal bands
 - 1st classification of cloud type (thickness) Shallow and Non-Shallow
 - 2nd classification of not-shallow clouds (phases) Non-shallow-tall Non-shallow-cold
 - 3rd classification of not-shallow clouds (water vapor) Non-shallow-tall-cold/colder Non-shallow-taller-cold/colder

Inversion
- Selection of DBs (Thresholds of BTDs)
 - Selection of optimal cases in the DB (Comparisons of PDFs)
 - Assignment of channel weights
 - Bayesian inversion
 - CDF-based scaling
 - Surface rain rates (RR)

Proxy data for GK-2A AMI
- Himawari AMI
 - IR TBs at the selected channels: 6.2, 7.3, 8.6, 11.2, 12.4 μm
 - Spatial/temporal resolutions: 2 km/10 min.
 - Coverage: 60° E - 220° E, 80° N - 80° S

Ancillary data
- For-a-priori DBs and separation of clouds
 - GPM (GlobalPrecipitation Measurement) DPR level 2 data (Surface rain, shallow flag, storm height)
 - GMI level 2 surface rain (comparison)
 - Coverage: 180° W - 180° E, 65° S - 65° N