Investigation of Arctic mixed-phase clouds during ALOUD with the novel active and passive microwave package MiRAC

Mario Mech, Susanne Crewell, Andreas Anhäuser, Leif-Leonard Kliesch
Institute for Geophysics and Meteorology, University of Cologne, Germany
Andre Ehrlich, Manfred Wendisch
Leipzig Institute for Meteorology, University Leipzig, Germany
Roland Neuber, Christof Lüpkes
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven and Potsdam, Germany
Andreas Macke
Leibniz Institute for Tropospheric Research, Leipzig, Germany
and the ALOUD team
https://seaice.uni-bremen.de/sea-ice-concentration/arctic-sea-ice-minima/

Wendisch et al. (2017)
Arctic Amplification: Climate Relevant Atmospheric and Surface Processes, and Feedback Mechanisms (AC)³

Overarching goals:
- Identify, investigate, and evaluate key processes
- Improve the understanding of the major feedback mechanisms
- Quantify their relative importance

http://ac3-tr.de/
Arctic CLoud Observations U sing airborne measurements during polar Day (ACLOUD)

Physical feedback of Arctic PBL, Sea ice, Cloud And Aerosol (PASCAL)

Arctic Balloonborne profiling EXperiment (ABEX)

CONtinuous characterization of the Ny-Ålesund COlumn and Radiative effects from ground-baseD remote sensing (CONCORD)

Cold period — May 23–29, 2017 (7 days)
Warm period — May 30–June 12, 2017 (14 days)
Normal period — June 13–26, 2017 (14 days)
Cloud and Aerosol properties
Trace gas CO/CO2
Turbulent fluxes

Vertical and horizontal variability
Turbulent fluxes

Polar 5 = Remote Sensing
Polar 6 = In Situ
MiRAC - A Microwave Radar and radiometer for Arctic Clouds

Radar

RPG-FMCW-94-SP-G1:
- 94 GHz FMCW ± 100 MHz
- Transmitter power 1.5 W typical
- Antenna gain 51.5 dB
- Beam width 0.48° FWHM
- Polarisation V
- Typical Dynamic range (sensitivity) with 1.5 W transmitter @ 3 s sampling time:
 - -60 dBz to +20 dBz (at 500 m/5 m vert. res.)
 - -50 dBz to +20 dBz (at 2 km/10 m)
 - -47 dBz to +20 dBz (at 4 km/30 m)
- Max. vertical resolution 1 m
- Doppler range ± 9 m/s (0-2500 m), ± 4.2 m/s above
- Doppler resolution ± 1.5 cm/s
- Profiles of reflectivity, Doppler spectra, higher Moments
- passive 89 GHz for liquid water path estimation
- Belly pod underneath aircraft
- Ground operation on stand

Installation
Belly pod with 25° backward angle
MiRAC - P Microwave Radar and radiometer for Arctic Clouds

Radiometer

RPG-LHUMPRO-243-340-G4:
- Passive channels overlapping with Ice Cloud Imager ICI: 6 DSB at 183 GHz H₂O line for humidity profiling, 243 and 340 GHz for opacity estimation and ice cloud observation
- Absolute brightness temperature accuracy 1.0 K
- Channel bandwidth 200 MHz @ 183 GHz, 4 GHz @ 243 and 340 GHz
- Optical resolution HPBW 1.3°
- Integration time ≥ 0.4 seconds
- Absolute calibration with internal ambient & external cold load
- Stability better than 0.03 K over full operating temperature range
- Ground operation on stand

Installation
Inside cabin, nadir pointing
Radarsignal correction

Aircraft orientation
Instrument mount
Time shifts

raw

 calibrated: mount position

[Diagram showing radar signal correction with aircraft orientation and instrument mount considerations]
Filter detected signals for artifacts due to FMCW method, “mirrored” signal at surface, and clutter
Research flights during A CLOUD

Statistics:
- Svalbard: 22.5.-29.6.2017
- Flight hours: Polar 5 & 6 each 80 h
- Ny-Ålesund: 13
- Polarstern: 8
- CloudSat - A-Train: 5
- Colocated Polar 5 & 6 flights
- Low level - high flights
- Ice - open water

Targets:
- Mixed-phase clouds
- Arctic precipitation
- Turbulence
- Radiation budget
- Satellite validation
- Surface albedo
May 27, 2017 3 mins over broken sea ice

- radar/lidar reveals persistent mixed phase clouds
- most clouds occur within CloudSats blind zone and below sensitivity limit
- setup well suited to assess EarthCare performance
June 2, 2017 at ~82°N, 9°E
outlook

Deriving higher moments of velocity spectrum

Observation driven simulation - validation by forward simulations

Upcoming campaigns:
AFLUX March/April 2019 Svalbard
MOSAiC March/April and Aug/Sept 2020

Schemann (University of Cologne)

https://www.mosaic-expedition.org/
Main messages

AC3 established to investigate process and their feedback mechanisms in the Arctic climate.

ACLOUD campaign conducted in May/June 2017 out of Svalbard to collect a dataset that will help to understand Arctic mixed-phase clouds and boundary layer processes.

MiRAC as an active and passive microwave remote sensing suite installed and operated on Polar aircraft.

MiRAC data ready to be used and observations look promising in terms of detail, resolution, and quality and serves alone or in combination with the other remote sensing instrumentation as a valuable package to validate satellite observations and models.