OCEANIC SHIPBOARD PRECIPITATION VALIDATION PROJECT

Christian Klepp ¹, ²

¹ KlimaCampus, Meteorological Institute, University of Hamburg, Germany
² Max Planck Institute for Meteorology, Hamburg, Germany

christian.klepp@zmaw.de

Outline

- Motivation
- The Optical Disdrometer 470
- Measurement Activities
- Data Analysis
 - High-Latitude Atlantic Ocean (Rain, Mix, Snow)
 - Liquid and Frozen PSD
 - Tropical Atlantic Ocean (Light Precip vs Convection)
 - DSD
- Conclusion / Outlook
- Precipitation is a key driver for Earth’s climate
- Satellite and re-analysis data substantially differ
- Water cycle to large extent driven over oceans with transport over land
- Oceans mostly void of in-situ data
- Lack of suitable in-situ instruments for shipboard usage (strong wind / sea state / snow)
- IPWG recommendation “…urges more attention to the provision of high quality surface validation data in oceanic areas using innovative ship based instruments”
- No such data available for GPM-GV
- This project aims at providing a comprehensive data base using 6 shipborne ODM470 optical disdrometers with focus on oceanic climate hotspot regions
- for satellite data set / re-analysis validation (rate) and retrieval constraints (DSD / PSD)
Automatic Measurement System: Optical Disdrometer ODM 470

- cylindrical measurement volume
- pivoting by aid of wind vane
- adjusts perpendicular to relative wind
- photoelectric barrier
- sensitive volume 120 mm x 22 mm
- a size dependent light extinction
- cross-sectional area, shadow area
- residence time
- 128 size bins in log-scale, used range: 0.43 mm to 22 mm
- Reference voltage attenuates with occurrence of hydrometeors
- Measurement interval 1 minute

RAIN:
Terminal fall velocity and mass of hydrometeor
→ Atlas and Ulbrich, 1974

SNOW: (liquid water equivalent)
Terminal fall velocity and mass of hydrometeor
→ Hogan, 1994 with one common parameterization for lump graupel (Lempio, 2007)
Developed by Eigenbrodt, Geomar, MPI-M, KlimaCampus

\[n(\text{bin}) = \text{particle size distribution density (Clemens, 2002)} \]
\[\text{by particle counting } N(\text{bin}) \]
\[n(\text{bin}) = \frac{N(\text{bin})}{L \cdot D \cdot T \cdot \sqrt{ff^2 + (v_\infty(\text{bin}))^2}} \]

after Großklaus (1996)

RAIN:
\[V_{\text{fall}}(\text{bin}) = 9.65 - 10.3 \cdot \exp(-1.2 \cdot (dp(\text{bin}) \cdot 12./2.)) \]
\[M_{\text{tr}}(\text{bin}) = \pi \cdot \frac{4}{3} \cdot 1000 \cdot (dp(\text{bin})/200.)^3 \]

SNOW:
\[V_{\text{fall}}(\text{bin}) = 7.33 \cdot (dp(\text{bin}))^{0.78} \]
\[M_{\text{tr}}(\text{bin}) = 0.0000107 \cdot (dp(\text{bin}))^{3.1} \]

\[R = 3600 \cdot \sum_{\text{bin}=0}^{128} n(\text{bin}) \cdot V_\infty(\text{bin}) \cdot M_{\text{tr}}(\text{bin}). \]

Maintenance free system
Tested and calibrated during field campaigns Bumke, 2002; Lempio, 2007; Klepp, 2010

Calibration
Spherical particles from 0.5 to 22 mm
Disdrometer-constant for precip volume scaling
ANS410 gauge vs ODM470 disdrometer
Windspeed < 1 m/s to avoid gauge undercatch

Cyclone Rainfall, 31 May 2012, Hamburg
Calibration test, rainfall time series

+1.3% +0.26 mm at 20 mm
The project, ships and data …

Project duration: 2009 to 2016

4.5 a of data, > 3 Mio Minutes of Measurements with > 300.000 spectra … steadily growing

2 R/V Polarstern since Jun 2010, Atlantic Ocean
3 R/V Akademik Ioffe since Sep 2010, Atlantic Ocean
4 R/V Aranda, Sep/Oct 2010, R/V Maria S. Merian since Dec 2011, Atlantic Ocean
5 R/V Sonne from Sep 2012, Pacific Ocean
6 NCAR, Boulder, Snowfall // SeaOrbiter, Boulder / Med Sea
7 Argentinean Southern Ocean cruises and R/V Investigator, Southern Oceans
Oceanic Precipitation Validation
IPWG6, 15-19 October 2012, Brazil
Christian Klepp

The project, ships and data …

- QC checks (continuity, location, outliers, …)
- ODM470 time series calculated with both rain and snowfall algorithm
- Mix/solid precip shows up already as completely unrealistic rain data
- 3-hourly WW Obse data and Tair used to identify phase
- Merging rainfall, snowfall and mix-phase precip, quality checks with minute res-PSD
- Merging of data with GPS and meteo data from ships
- Data base contains 15 parameters plus PSD for every minute
- to date 300,000 minutes of precipitation in data base (growing with 4 ships)
4 years precipitation tracks of R/V Polarstern and R/V Akademik Ioffe

JUN-OCT
NH
OCT-MAY
SH

GV areas of interest for:
MT
GPM-GV Cloudsat
SSMIS

June 2010 to June 2012
43095 minutes of rainfall (black)
31460 minutes of snowfall (blue)
17128 minutes of mix-phase (green)
91683 minutes of precipitation in 2 years

Red: Air temperature
Grey: Relative wind speed
How often occurs rainfall, snowfall and mix-phase precipitation during 2 years of Atlantic Ocean transects?

Precipitation occurred in 9.6% of the time with 4.5% rain, 3.3% snow, 1.8% mix-phase a total volume of 927.16 mm with 88.2% rain, 8.4% snow, 3.4% mix-phase

<table>
<thead>
<tr>
<th>Intensity</th>
<th>Type</th>
<th>Rel%</th>
<th>Abs%</th>
<th>Volume (mm)</th>
<th>Vol%</th>
</tr>
</thead>
<tbody>
<tr>
<td>43095 minutes of rainfall</td>
<td>4.5</td>
<td>817.29</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28493 minutes of rainfall</td>
<td>3.0</td>
<td>61.41</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13000 minutes of rainfall</td>
<td>1.4</td>
<td>329.61</td>
<td>40.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1602 minutes of rainfall</td>
<td>0.1</td>
<td>426.27</td>
<td>52.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31460 minutes of snowfall</td>
<td>3.3</td>
<td>77.77</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28976 minutes of snowfall</td>
<td>3.0</td>
<td>35.52</td>
<td>45.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2476 minutes of snowfall</td>
<td>0.3</td>
<td>41.41</td>
<td>53.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 minutes of snowfall</td>
<td>0.02</td>
<td>0.84</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17128 minutes of mix-phase</td>
<td>1.8</td>
<td>32.10</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16288 minutes of mix-phase</td>
<td>1.7</td>
<td>9.91</td>
<td>30.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>795 minutes of mix-phase</td>
<td>0.09</td>
<td>16.68</td>
<td>52.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45 minutes of mix-phase</td>
<td>0.01</td>
<td>5.51</td>
<td>17.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

959.517 minutes no precip
91.683 minutes of precip
Extreme precipitation events in 2 years:

- 147 minutes > 30 mm/h (green)
- 64 minutes > 60 mm/h (blue)
- 35 minutes > 90 mm/h (red)

- Intense cyclones in stormtrack peaks up to 187 mm/h
- ITCZ up to 113 mm/h

Southern Ocean Cyclone
PFL, 30 JAN 2012
93 mm/h, 23 m/s

Postfrontal cluster
05 OCT 2010
91 mm/h, 20 m/s

ITCZ cluster
11 NOV 2010
113 mm/h, 16 m/s

Postfrontal cluster
30 OCT 2010
187 mm/h, 30 m/s
2 Years of ODM470 Polarstern Precipitation

98110 spectra: 10JUN2010 to 15MAY2012

- Number concentration 46421 spectra rain
- Number concentration 31529 spectra snow
- Number concentration 17130 spectra mix-phase

Logarithmic Number concentration

Particle Diameter (mm)

VIRGA

180 drops

100 flakes

50 mix-flakes

Cold/Warm Snow
Huch much drizzle, stratiform and convective precip falls in the ITCZ?

Here: 3 ITCZ transects! Now already 10!
Tropical Precipitation Statistics (3 transects, now already 9)

<table>
<thead>
<tr>
<th>Precipitation type</th>
<th>Precipitation occurrence (cases)</th>
<th>Precipitation duration (hours)</th>
<th>Total occurrence (%)</th>
<th>Relative occurrence (%)</th>
<th>Accumulated occurrence (%)</th>
<th>Mean rainfall (mm/h)</th>
<th>Accumulated rainfall (mm)</th>
<th>Accumulated rainfall (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No precipitation</td>
<td>5406</td>
<td>90.1</td>
<td>96.16</td>
<td></td>
<td></td>
<td>7.12</td>
<td>25.64</td>
<td>100.00</td>
</tr>
<tr>
<td>Precipitation</td>
<td>216</td>
<td>3.6</td>
<td>3.84</td>
<td>100.00</td>
<td></td>
<td>0.13</td>
<td>0.27</td>
<td>1.07</td>
</tr>
<tr>
<td>Drizzle</td>
<td>131</td>
<td>2.2</td>
<td>2.33</td>
<td>60.65</td>
<td>60.65</td>
<td>1.67</td>
<td>1.23</td>
<td>4.79</td>
</tr>
<tr>
<td>Stratiform</td>
<td>44</td>
<td>0.7</td>
<td>0.78</td>
<td>20.37</td>
<td>81.02</td>
<td>35.32</td>
<td>24.10</td>
<td>94.14</td>
</tr>
<tr>
<td>Convective</td>
<td>41</td>
<td>0.7</td>
<td>0.73</td>
<td>18.98</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Transect R/V Polarstern, 10 - 14 November 2010, 5622 minutes (3.9 days)

No precipitation	5434	90.6	90.18			2.34	17.37	100.00
Precipitation	592	9.9	9.82	100.00		0.12	0.72	4.16
Drizzle	370	6.2	6.14	62.50	62.50	1.59	4.31	24.79
Stratiform	162	2.7	2.69	27.36	89.86	3.92	10.37	27.76
Convective	60	1.0	0.99	10.14	100.00			

Transect R/V Polarstern, 28 April - 2 May 2011, 6026 minutes (4.0 days)

No precipitation	7924	132.1	91.12			2.90	37.35	100.00
Precipitation	772	12.9	8.88	100.00		0.13	0.76	2.04
Drizzle	341	5.7	3.92	44.17	44.17	1.75	10.37	27.76
Stratiform	355	5.9	4.08	45.98	90.15	7.32	26.22	70.20
Convective	76	1.3	0.88	9.85	100.00			

Transect R/V Akademik Ioffe, 19 - 25 October 2010, 8696 minutes (6.0 days)

No precipitation	18764	312.7	92.23			3.28	86.04	100.00
Precipitation	1580	26.3	7.77	100.00				
Drizzle	842	14.0	4.14	53.29	53.29	0.13	1.76	2.04
Stratiform	561	9.4	2.76	35.51	88.88	1.70	15.90	18.48
Convective	177	3.0	0.87	11.20	100.00	23.18	68.38	79.48

All three transects: 20344 minutes (14.1 days)

Dry or wet transects
ITCZ extreme values

<table>
<thead>
<tr>
<th>Convective extremes</th>
<th>Total number of occurrence (minutes)</th>
<th>Number of events (cases)</th>
<th>Event duration (minutes)</th>
<th>Maximum precipitation rate (mm/h)</th>
<th>Accumulated min/max Precipitation (mm)</th>
<th>Min/max wind speed (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transect R/V Polarstern, 10 - 14 November 2010, 5622 minutes (3.9 days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 30 mm/h</td>
<td>19</td>
<td>6</td>
<td>1,7,1,2,3,5</td>
<td>58.6</td>
<td>0.55 to 8.55</td>
<td>3.1 to 9.4</td>
</tr>
<tr>
<td>> 60 mm/h</td>
<td>8</td>
<td>5</td>
<td>4,1,1,1,1</td>
<td>72.1</td>
<td>1.08 to 6.00</td>
<td>4.3 to 9.4</td>
</tr>
<tr>
<td>> 90 mm/h</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>113.7</td>
<td>3.52</td>
<td>4.3</td>
</tr>
<tr>
<td>Transect R/V Polarstern, 28 April - 2 May 2011, 6026 minutes (4.0 days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 30 mm/h</td>
<td>10</td>
<td>4</td>
<td>2,3,1,4</td>
<td>56.4</td>
<td>0.64 to 2.78</td>
<td>1.0 to 9.8</td>
</tr>
<tr>
<td>> 60 mm/h</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>74.5</td>
<td>1.24</td>
<td>5.5</td>
</tr>
<tr>
<td>> 90 mm/h</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Transect R/V Akademik Ioffe, 19 - 25 October 2010, 8696 minutes (6.0 days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 30 mm/h</td>
<td>14</td>
<td>5</td>
<td>3,3,1,4,3</td>
<td>52.0</td>
<td>0.66 to 3.64</td>
<td>5.7 to 12.2</td>
</tr>
<tr>
<td>> 60 mm/h</td>
<td>3</td>
<td>2</td>
<td>1,2</td>
<td>76.7</td>
<td>1.05 to 2.31</td>
<td>5.7 to 6.5</td>
</tr>
<tr>
<td>> 90 mm/h</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>All three transects, 20344 minutes (14.1 days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 30 mm/h</td>
<td>45</td>
<td>15</td>
<td>1 to 7</td>
<td>58.6</td>
<td>0.55 to 8.55</td>
<td>1.0 to 12.2</td>
</tr>
<tr>
<td>> 60 mm/h</td>
<td>12</td>
<td>8</td>
<td>1 to 4</td>
<td>76.7</td>
<td>1.05 to 6.00</td>
<td>4.3 to 9.4</td>
</tr>
<tr>
<td>> 90 mm/h</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>113.7</td>
<td>3.52</td>
<td>4.3</td>
</tr>
</tbody>
</table>
PDF
Accumulated Precipitation (%) vs rain rate (mm/h) for combined ship data in 4 resolutions

20344 values (0.2 km)
194 values (25 km)
97 values (50 km)
50 values (100 km)

- Line of data in time
- “100 ships in parallel”
- Representativeness of 3 transects
- More data available

PDF
Accumulated Precipitation (%) vs rain rate (mm/h) for ship data and different satellite datasets

Climatologies 1998-2005
All zero values included
Bin width = 0.1 mm/h

- Instantaneously sampled area
- Point to Area Problem
- Spatial differences
- Different thresholds
- Retrieval peculiarities
Shipboard ODM470 ITCZ Rainfall

Drop Size Distribution of 1659 Rainfall Spectra from 3 ITCZ Transects

- Number concentration 841 spectra of drizzle
- Number concentration 561 spectra of stratiform precipitation
- Number concentration 177 spectra of convective precipitation

10 drops

9.5 mm
Micro Rain Radar 24 GHz
on R/V Polarstern since 11 October 2012

Cooperation Chris Kidd, NASA GSFC, GPM-GV

- Doppler spectra of hydrometeors between 50 and 6000 meters height.
- Vertical profiles
- Highly detailed resolution in both time (10 sec) and height (30 m)
- Bright band of the melting zone
- Present weather sensor
- Precipitation rates and LWC

- Rarely used onboard ships (R/V Alkor, R/V Aranda)
- Interference with other shipboard radars likely
- Pitch / Roll corrections difficult
Conclusions

- to date the only non-gauge-based systematic oceanic precipitation validation effort
- > 250.000 minutes of in-situ shipboard precipitation data available
- Frequency, intensity, rates, accumulated amounts, phase (rain, snow, mix)
- Atlantic Ocean from Arctic to Antarctica, ITCZ, Trade zones, Pacific Ocean
- Data collection ongoing until 2016 with currently 6 instruments
- Instrument updated from Windows to Linux, from PC to Processor Box, End-to-End
- Precipitation over the Atlantic Ocean present in 9.6 % of the time within 2 years
- 4.5% as rain, 3.3% as snow, 1.8% as mix-phase
- 0.1% convective rain accounts for 52% of the rain volume
- Extremes in ITCZ but also post-frontally in mid-latitude cyclones
- ITCZ data: 53% drizzle accounts for 2% volume, 11% convective for 80% volume
- PSD data shows the differences between rain, snow and mix-phase precip
- Satellite data of different pixel size shows similar behavior as averaging ship data

Outlook

Usage of data:

- Validation for satellite based // re-analysis data sets …
- Retrieval constraints…
- GV for GPM-GV, Mehtatropique, Cloudsat, SSMIS …
- From PSD number concentrations to reflectivity…
- Point to area statistics…
- Validation of Virga-Precipitation

Additional (long-term) ship opportunities very welcome (merchant / research ships)
Thank You!

R/V Polarstern mast in 45 m height on 2 October 2012 in the Arctic