A Prototype Precipitation Retrieval Algorithm Over Land Using Passive Microwave Observations Stratified by Surface Condition and Precipitation Vertical Structure

Yalei You1, Nai-Yu Wang1, Ralph Ferraro1,2 and Patrick Meyers1
1University of Maryland, ESSIC/Cooperative Institute for Climate and Satellites (CICS-MD)
2NOAA/NESDIS/STAR – College Park, MD

Poster number: P1.45
Email: yyou@umd.edu

Background

- We have developed a prototype precipitation algorithm by considering both surface condition and precipitation vertical structure.
- This prototype algorithm is applied to SSMIS (imager) and ATMS (sounder).
- Results based on this prototype algorithm greatly outperform the traditional single database algorithm.

Methodology

- The Linear Discriminant Analysis (LDA) is used for precipitation (rainfall/snowfall) detection.
- The Bayesian algorithm based on the Principal Component Analysis (PCA) is employed for precipitation retrieval.
- The PCA is applied to TBs, corresponding to same surface rainrate, which guarantee that the covariance matrix is diagonal.

Database construction

- Ground radar observations over Continental United States (CONUS) with radar quality index greater than 0.5.
- SSMIS and ATMS brightness temperatures (TBs).
- Applied this database over CONUS and globally over land.

Database stratification

- Using the following four parameters to stratify the single database:
 - Surface type (e.g., forest vs. desert)
 - Surface temperature
 - Elevation
 - Ice layer depth
- One more parameter (beam position) is added to further stratify the databases for ATMS to consider the varying FOV and mixed polarization.
- The essential idea is to: stratify the single database into smaller but more homogenous databases. By doing so, both the surface condition and precipitation vertical structure is similar in each smaller databases.

Effect of stratification on detection

<table>
<thead>
<tr>
<th>POD (%) for rainfall detection</th>
<th>Only</th>
<th>TBs</th>
<th>rh and w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single database</td>
<td>75.9</td>
<td>78.3</td>
<td></td>
</tr>
<tr>
<td>Stratified database</td>
<td>84.0</td>
<td>85.4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POD (%) for snowfall detection</th>
<th>Only</th>
<th>TBs</th>
<th>rh and w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single database</td>
<td>56.0</td>
<td>67.2</td>
<td></td>
</tr>
<tr>
<td>Stratified database</td>
<td>68.0</td>
<td>76.4</td>
<td></td>
</tr>
</tbody>
</table>

- Using stratified databases: larger Heidke Skill Score (HSS) for both rainfall and snowfall retrieval results.
- Using databases, the POD increases 8.1% and 12.0% for rainfall and snowfall detection.
- POD further increases to 76.4 by adding relative humidity (rh) and vertical velocity (w) for snow detection.

Effect stratification on retrieval

- Only use the CONUS data, the major rain band (e.g., ITCZ) movement is well demonstrated.
- Local database (e.g., over CONUS) could be “transferred” to the global coverage.

The rainfall retrieval performance

- only use the CONUS data, the snowfall progress and retreat in Jan. and Apr. is demonstrated.
- Artificial large snowfall rate (e.g., Siberia) is caused by the database completeness issue.
- Validation from other data sources (e.g., CloudSat and surface station observations) is needed.

In summary:

- This prototype algorithm works reasonably well for both rainfall and snowfall.
- The lack of scattering signature in some snowfall events and strong surface contamination make it difficult to estimate snowfall rate accurately.
- The ancillary parameters make it possible to “transfer” a local database to the global coverage.
- This algorithm has the potential to be applied for all GPM constellation radiometers.