Planning for the next generation geostationary satellites (GK-2A) of Korea Meteorological Administration (KMA)

Yunbok Lee & Geun-Hyeok Ryu
8th IPWG and 5th IWSSM JOINT WORKSHOP
PLANNING FOR THE NEXT GENERATION OF GEOSTATIONARY SATELLITES OF KMA

NMSC Goal

- To **operate timely** COMS, to gather reliable satellite data on weather and climate and to **deliver** them to other Agencies and countries.
GEO-KOMPSAT-2 program

<table>
<thead>
<tr>
<th>Sector</th>
<th>Satellite in Orbit</th>
<th>Operator</th>
<th>Location</th>
<th>Launch date</th>
<th>Payloads</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Pacific</td>
<td>GEO-KOMPSAT-2A (GK-2A)</td>
<td>KMA</td>
<td>128.2°E</td>
<td>05/2018</td>
<td>Advanced Meteorological Imager (AMI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Korea Space wEather Monitoring payload (KSEM)</td>
</tr>
<tr>
<td></td>
<td>GEO-KOMPSAT-2B (GK-2B)</td>
<td>MOF (Ministry of Ocean and Fisheries) ME (Ministry of Environment)</td>
<td>128.2°E</td>
<td>03/2019</td>
<td>Advanced Geostationary Ocean Colour Imager(GOCI-II)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Geostationary Environmental Monitoring Spectrometer(GEMS)</td>
</tr>
</tbody>
</table>

The Schedule for GEO-KOMPSAT-2A and 2B program
GEO-KOMPSAT-2A AMI (Advanced Meteorological Imager)

- Multi-channel capacity: 16 channels
- Temporal resolution: within 10 minutes for Full Disk observation
- Flexibility for the regional area selection and scheduling
- Lifetime of meteorological mission: 10 years

<table>
<thead>
<tr>
<th>Bands</th>
<th>Center Wavelength (um)</th>
<th>Band Width (Max, um)</th>
<th>Resolution (km)</th>
<th>GOES-R (ABI)</th>
<th>Himawari-8 (AHI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VNIR</td>
<td>VIS0.4 0.431</td>
<td>0.479 0.075</td>
<td>1</td>
<td>0.47</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>VIS0.5 0.5025</td>
<td>0.5175 0.0625</td>
<td>1</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VIS0.6 0.625</td>
<td>0.66 0.125</td>
<td>0.5</td>
<td>0.64</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>VIS0.8 0.8495</td>
<td>0.8705 0.0875</td>
<td>1</td>
<td>0.865</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>NIR1.3 1.373</td>
<td>1.383 0.03</td>
<td>2</td>
<td>1.378</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NIR1.6 1.601</td>
<td>1.619 0.075</td>
<td>2</td>
<td>1.61</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>NIR2.2 2</td>
<td>3.35 2</td>
<td>2</td>
<td>3.35</td>
<td>2.3</td>
</tr>
<tr>
<td>MWIR</td>
<td>IR3.8 3.74</td>
<td>3.96 0.5</td>
<td>2</td>
<td>3.90</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>IR6.3 6.061</td>
<td>6.425 1.038</td>
<td>2</td>
<td>6.185</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>IR6.9 6.89</td>
<td>7.01 0.5</td>
<td>2</td>
<td>6.95</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td>IR7.3 7.258</td>
<td>7.433 0.688</td>
<td>2</td>
<td>7.34</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td>IR8.7 8.44</td>
<td>8.76 0.5</td>
<td>2</td>
<td>8.50</td>
<td>8.6</td>
</tr>
<tr>
<td>LWIR</td>
<td>IR9.6 9.543</td>
<td>9.717 0.475</td>
<td>2</td>
<td>9.61</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>IR10.5 10.25</td>
<td>10.61 0.875</td>
<td>2</td>
<td>10.35</td>
<td>10.4</td>
</tr>
<tr>
<td></td>
<td>IR11.2 11.08</td>
<td>11.32 1.0</td>
<td>2</td>
<td>11.2</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td>IR12.3 12.15</td>
<td>12.45 1.25</td>
<td>2</td>
<td>12.3</td>
<td>12.3</td>
</tr>
<tr>
<td></td>
<td>IR13.3 13.21</td>
<td>13.39 0.75</td>
<td>2</td>
<td>13.3</td>
<td>13.3</td>
</tr>
</tbody>
</table>
Observation Area and Schedule

- **Full Disk**
- **Regional Area (RA)**: 6200 X 5900 km (EW X NS) (TBD)
- **Extended Local Area (ELA)**: 4300 X 2900 km (EW X NS) (TBD)
 - Plan 1: Full Disk (1) + ELA (4) / 10 minutes
 - Plan 2: Full disk (1) + RA (2) / 10 minutes
The algorithm prototype of 23 (primary) products have developed by 4 algorithm groups and 29 (secondary) products will be developed by the end of 2016. MODIS, SEVIERI, COMS, and AHI data are used as proxies to evaluate each algorithm.
Detailed 52 meteorological products

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud detection</td>
<td>Cloud Top Temperature</td>
<td>Aerosol Detection</td>
<td>Atmospheric Motion Vector</td>
</tr>
<tr>
<td>Snow Cover</td>
<td>Cloud Top Pressure</td>
<td>Aerosol Optical Depth</td>
<td>Vertical Temperature Profile</td>
</tr>
<tr>
<td>Sea Ice Cover</td>
<td>Cloud Top Height</td>
<td>Asian Dust Detection</td>
<td>Vertical Moisture Profile</td>
</tr>
<tr>
<td>Fog</td>
<td>Cloud Type</td>
<td>Asian Dust Optical Depth</td>
<td>Stability Index</td>
</tr>
<tr>
<td>Sea Surface Temperature</td>
<td>Cloud Phase</td>
<td>Aerosol Particle Size</td>
<td>Total Precipitable Water</td>
</tr>
<tr>
<td>Land Surface Temperature</td>
<td>Cloud Amount</td>
<td>Volcanic Ash Detection and Height</td>
<td>Tropopause Folding Turbulence</td>
</tr>
<tr>
<td>Surface Emissivity</td>
<td>Cloud Optical Depth</td>
<td>Visibility</td>
<td>Total Ozone</td>
</tr>
<tr>
<td>Surface Albedo</td>
<td>Cloud Effective Radius</td>
<td>Radiances</td>
<td>SO₂ Detection</td>
</tr>
<tr>
<td>Fire Detection</td>
<td>Cloud Liquid Water Path</td>
<td>Downward SW Radiation (SFC)</td>
<td>Convective Initiation</td>
</tr>
<tr>
<td>Vegetation Index</td>
<td>Cloud Ice Water Path</td>
<td>Reflected SW Radiation (TOA)</td>
<td>Overshooting Top Detection</td>
</tr>
<tr>
<td>Vegetation Green Fraction</td>
<td>Cloud Layer/Height</td>
<td>Absorbed SW Radiation (SFC)</td>
<td>Aircraft Icing</td>
</tr>
<tr>
<td>Snow Depth</td>
<td>Rainfall Rate</td>
<td>Upward LW Radiation (TOA)</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>Rainfall Potential</td>
<td>Downward LW Radiation (SFC)</td>
<td></td>
</tr>
<tr>
<td>Probability of Rainfall</td>
<td></td>
<td>Upward LW Radiation (SFC)</td>
<td></td>
</tr>
</tbody>
</table>
52 Meteorological Products

● Development Schedule(2014~2018)
 • 2014-2016 : Algorithm Development
 • 2017-2018 : Validation and Integration of Algorithm for Operation

● 4 Algorithm Groups
 • Cloud and Precipitation
 • Scene analysis and Surface information
 • Radiation and Aerosol
 • Atmosphere and Aviation

● Goal & Strategy
 • “more accurate, consistent, reliable” meteorological products
 • “optimal estimation” for consistency within products
 • “artificial intelligence” for improvement of some products accuracy
 • “algorithm test-bed” for optimizing scientific algorithm to operation system
 • “international review team” for improvement of the algorithm development
Application areas

- To be designed to maximize the utilization of the satellite products for forecasters and NWP

<table>
<thead>
<tr>
<th>Areas</th>
<th>Contents</th>
</tr>
</thead>
</table>
| Nowcasting | • Cloud analysis
• Heavy rainfall and snowfall analysis
• QPF |
| Typhoon & Ocean | Typhoon analysis system based on Satellite SST, red tide, freezing over the ocean
3D Winds analysis |
| Hydrology & SFC | Soil moisture, Drought and Floods, Fire detection
Fine Dust analysis
Verification, grid and image composite technique |
| Climate & Environmental Monitoring | Aerosol concentration, height, vertical distribution
Greenhouse gases, atmospheric composition
Energy budget, Air Quality model applications, Volcanic Ash |
Drought

- **Goal**: Drought determination using VHI (Vegetation Health Index)
- **Procedure**
 - Improvement of sensitive variable in order to explain vegetation stress by VHI
 - Considering seasonal and individual vegetation difference with respect to change weight of VHI and TCI (Temperature Condition Index)

\[\text{The algorithm will be developed by using both GK2A and GK2B data} \]

Support Comprehensive Drought information systems of KMA
Goal: Flooding real-time monitoring

Procedure
- Using analysis technique development of GK-2A RGB and Reflection

(Left) RGB composite, (right) detection of flooding region on Feb. 19, 2010 from Ireland et al., 2015
Forest Fire

- **Goal**: Forest fire detection, vulnerability, damage area

- **Procedure**
 - FRP (fire radiative power): fire power and forest map \rightarrow guess biomass loss \rightarrow estimate fire emission
 - Vulnerability: Nesterov Index (NI) \(NI = \sum_{i=1}^{w} (T_i - T_{idew})T_i \)
 - Damage area: \(dNBR = \text{Prefire (NBR)} - \text{PostFire (NBR)} \)
Aerosol

- **Goal**: Aerosol density and height
- **Procedure**
 - Aerosol height estimated by statistical regression equation model using aerosol optical depth, surface observation, other metrological element
 - Aerosol height algorithm based O4 AMF (air mass factor)
Volcanic Ash

- Goal: Detect volcanic eruption and ash movement
- Procedure
 - Day: $BT_{11} < 290$, $BTD_{11-12} < -0.5$, $TVAP > 70$, $\rho_{3.9}/\rho_{0.66} > 0.6$
 - Night: $BT_{11} < 290$, $BTD_{11-12} < -0.5$, $TVAP > 70$
 (Lee et al., 2014, 2015)

Mt. Shinmoedake eruption, Japan
(26 Jan 2011)

MODIS
Evapotranspiration

\[\text{evapotranspiration} = \text{transpiration} + \text{evaporation} \]

\[\text{transpiration} \]

\[\text{trees} \quad \text{grass} \]

\[\text{evaporation} \]

\[\text{runoff} \]

\[\text{groundwater recharge} \]

\[R_n = LE + H + G \]

\[\Rightarrow LE = R_n - H \]

\[H = \rho \cdot c_p \frac{(T_s - T_a)}{r_a} \]

- **Comparison of evapotranspiration**
 - a) Daily
 - b) 7days(±3) average
 - c) Synthetic daily

- **Scatter plot (2013.3.4)**
 - a) 7days(±3) average
 - b) Synthetic daily

- **Annual output rate**
 - a) daily
 - b) Synthetic daily

<table>
<thead>
<tr>
<th>7days(±3) average</th>
<th>Synthetic daily</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSD</td>
<td>0.928</td>
</tr>
<tr>
<td>Bias</td>
<td>0.574</td>
</tr>
</tbody>
</table>

Improve the Algorithm with coefficients and input data (2016)
Summary

Resolution **4 times**
- COMS VIS 1km
- IR 4km
- Geo-KOMPSAT-2A VIS 0.5~1km
- IR 2km

Freq. of obs. **5 times**
- 1 HR
- Global 1 time
- Region 2 times
- Korea 4 times
- 4 FM
- More than 10 times
- Every 2 minutes

of channels **3 times**
- VIS
 - COMS 1 channel (B/W)
 - Geo-KOMPSAT-2A 4 channels (colors)
- NIR
 - COMS 2 channels
 - Geo-KOMPSAT-2A 10 channels
- IR
 - COMS 5 Ch.
 - Geo-KOMPSAT-2A 16 Ch.

Products **3.5 times**
- VIS
 - COMS 16 types
 - Geo-KOMPSAT-2A 52 types
- IR
 - COMS 4 channels
 - Geo-KOMPSAT-2A 16 Ch.
- Atmos. motion
 - COMS 3->6 types
 - Geo-KOMPSAT-2A 5->19 types
- Surface Info.
 - COMS 3->11 types
 - Geo-KOMPSAT-2A 5->16 types
- Rad./Aero.
 - COMS 5->16 types
 - Geo-KOMPSAT-2A 5->19 types
Thank you

Dr. Ryu, Geun-Hyeok
geunhyeokryu@korea.kr
8th IPWG and 5th IWSSM JOINT WORKSHOP
PLANNING FOR THE NEXT GENERATION OF GEOSTATIONARY SATELLITES OF KMA

Acronym

- KIOST : Korea Institute of Ocean Science and Technology (한국해양과학기술원)
- DCPC : Data Collection or Production Centre (slide 3)
- CHL : Chlorophyll (slide 4)
- CDOM : Colored Dissolved Organic Matter (slide 4)
- OBPG : Ocean Biology Processing Group (slide 4)
- UCAR : UCAR - University Corporation for Atmospheric Research (slide 4)
- GNSS-RO : Global Navigation Satellite System-radio occultation (slide 5)
- MODIS : Moderate Resolution Imaging Spectroradiometer (slide 9)
 NOAA Terra, Aqua 위성에 탑재
- SEVERI : Spinning Enhanced Visible and Infrared Imager (slide 9)
 EUMETSAT의 MSG 위성시리즈에 탑재
- AHI : Advanced Himawari Imager (slide 9)
 일본 정지궤도기상위성 Himawari-8/-9에 탑재
- TEMPO : Tropospheric Emissions: Monitoring of Pollution (slide 9)
GEO-KOMPSAT-2A Data Service Plan

[Via GK-2A broadcast]
- Broadcast all 16 channels data (UHRIT) of meteorological observations
- Maintain L/HRIT broadcast corresponding to COMS five channels

<table>
<thead>
<tr>
<th>Categories</th>
<th>UHRIT</th>
<th>COMS-like H/LRIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service</td>
<td></td>
<td>HRIT</td>
</tr>
<tr>
<td>Data Rate</td>
<td>≤ 31 Mbps</td>
<td>3 Mbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Same Frequencies band with COMS</td>
</tr>
<tr>
<td>Data Type</td>
<td>AMI Image (16 Ch.)</td>
<td>AMI Image (5 Ch.)</td>
</tr>
<tr>
<td></td>
<td>Alphanumeric text</td>
<td>Alphanumeric text</td>
</tr>
<tr>
<td></td>
<td>Encryption Key Message</td>
<td>Encryption Key Message</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GOCI-II products (TBD)</td>
</tr>
<tr>
<td></td>
<td>* Additional info could be added in the future</td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>FD</td>
<td>FD, ENH</td>
</tr>
<tr>
<td>Station</td>
<td>LDUS</td>
<td>MDUS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SDUS</td>
</tr>
</tbody>
</table>

[Via Landline]
- Cloud service is under development (completed in 2018)
- Renovated web-based service system is under development (completed in 2018)
- GK-2A data also will be available in DCPC-NMSC (http://dcpc.nmsc.kma.go.kr)
Volcanic Ash
Comparisons with other satellite products

Lee et al (RSE, 2016)
1. COMS-based ECVs long-term development plan (2011 yr)
 - Content: International trend analysis, COMS-based ECVs definition, selection variables in the second step

2. COMS meteorological variables (L2) production
 - Polar orbiting satellites (MetOp/IASI, Aqua/AIRS) verification system (GSICS), quality control
 - COMs Level2 Production and regular service (Since April, 2011)

3. Domestic and international satellite-based ECVs data sharing and utilization system
 - Objective: long-term securing of consistent data
 - (2015 yr) Primary ECVs (SST, INS, OLR) L3 unified system development
 - (2016 yr) Second ECVs (Albedo, Precipitation, cloud fraction) Algorithm Improvement

ECDs Integrated System

- Level 3: reprocessed through the rough footage, the details check in the calibration process, including spatial information grid-type satellite (composite) output