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ABSTRACT

In this paper it is shown that the flow-dependent instabilities that develop within an observation–analysis–
forecast (OAF) cycle and that are responsible for the background error can be exploited in a very simple way
to assimilate observations. The basic idea is that, in order to minimize the analysis and forecast errors, the
analysis increment must be confined to the unstable subspace of the OAF cycle solution. The analysis solution
here formally coincides with that of the classical three-dimensional variational solution with the background
error covariance matrix estimated in the unstable subspace.

The unstable directions of the OAF system solution are obtained by breeding initially random perturbations
of the analysis but letting the perturbed trajectories undergo the same process as the control solution, including
assimilation of all the available observations. The unstable vectors are then used both to target observations
and for the assimilation design.

The approach is demonstrated in an idealized environment using a simple model, simulated standard obser-
vations over land with a single adaptive observation over the ocean. In the application a simplified form is
adopted of the analysis solution and a single unstable vector at each analysis time whose amplitude is determined
by means of the adaptive observation. The remarkable reduction of the analysis and forecast error obtained by
this simple method suggests that only a few accurately placed observations are sufficient to control the local
instabilities that take place along the cycle.

The stability of the system, with or without forcing by observations, is studied and the growth rate of the
leading instability of the different control solutions is estimated. Whereas the model has more than one positive
Lyapunov exponent, the solution of the OAF scheme that includes the adaptive observation is stable. It is
suggested that a negative exponent can be considered a necessary condition for the convergence of a particular
OAF solution to the truth, and that the estimate of the degree of stability of the control trajectory can be used
as a simple criterion to evaluate the efficiency of data assimilation and observation strategies.

The present findings are in line with previous quantative observability results with more realistic models and
with recent studies that indicate a local low dimensionality of the unstable subspace.

1. Introduction

Accurate representation of the initial state is essential
for the accuracy of a forecast. Analysis procedures re-
quire the combined use of observations and of a back-
ground field, usually a short-range forecast (for a review
and notational conventions, see Ide et al. 1997). Ob-
servations and background are both affected by errors
of different nature and characteristics. Due to flow-de-
pendent instabilities, growth of uncertainties in the ini-
tial condition makes errors in the forecast highly vari-
able in space and time.

In what is called the observation–analysis–forecast
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(OAF) cycle, a forecast relies on the analysis and the
next analysis on the background field, that is, on the
forecast based on the previous analysis. This procedure
is particularly delicate in data-sparse areas, such as the
ocean, where forecast errors that affect the analysis, not
being controlled by observations, continue to grow from
one cycle to the next. Because, in data-void regions,
only the propagation of information from areas where
observations are taken can prevent errors from growing
to their saturation limit, the error in an analysis–forecast
cycle is expected to depend on the structure, growth,
and propagation properties of flow instabilities, as well
as on the temporal and geographical distribution of ob-
servations.

The need to take supplementary observations over
the ocean in order to improve the analysis and forecast
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in particular areas and in critical weather situations has
motivated a number of studies. Strategies for selecting
the location of the additional, often referred to as ‘‘adap-
tive’’ or ‘‘targeted,’’ observations (e.g., Snyder 1996;
Palmer et al. 1998) were developed in connection with
the Fronts and Atlantic Storm-Track Experiment (FAS-
TEX) and the North Pacific Experiment (NORPEX).
The general idea is that the forecast can be improved
through the addition of special observational data in a
particular upstream area where analysis errors are both
likely to occur and likely to be fast growing (Snyder
1996). In fact, several techniques were proposed, such
as adjoint-based sensitivity and singular vector calcu-
lations (Gelaro et al. 1999; Palmer et al. 1998; Bergot
et al. 1999; Langland et al. 1999), the quasi-inverse
linear method (Pu et al. 1997; Pu and Kalnay 1999),
and an ensemble transform technique (Bishop and Toth
1999; Szunyog et al. 1999), with the aim of objectively
determining where to locate the adaptive observations.
In a study with a low-order system, Lorenz and Emanuel
(1998, hereafter referred to as LE) were able to compare
the performance of various methods on a statistical ba-
sis. They found that, at least in their simple model,
ensemble-based strategies that target areas where a max-
imum background error is expected, are more efficient
than those that target areas to which a prechosen veri-
fication region is most sensitive.

With the special observations taken during the field
phases of FASTEX and NORPEX, the various methods
proposed for targeting were tested relative to the limited
number of real cases available from the experiments.
The analysis and forecast effects of the targeted obser-
vations were positive or mixed in most cases, but, at
first surprisingly, in some cases the additional data de-
graded the forecast (Szunyog et al. 1999; Montani et al.
1999; Langland et al. 1999). Evidence that in certain
circumstances addition of the extra information provid-
ed by adaptive observations may deteriorate the forecast
was also found in the experiments with a quasigeo-
strophic model (Morss et al. 2001) that were the con-
tinuation and extension of the results of LE. One of the
motivations of our study is to address this apparent par-
adox. We will work on the assumption that correcting
the analysis with additional data is not necessarily ben-
eficial to the forecast, unless the projection of the error
on the unstable subspace is reduced.

The focus of the paper is on building a method of
targeting and assimilating observations that is consistent
with the dynamical evolution of the errors: ideally the
analysis should satisfy the governing equations of the
model atmosphere, and it should coincide with the state
that the true trajectory goes through at the analysis time.

An important consideration is that the analysis error
that is going to grow in the next forecast is, to a large
extent, due to the same flow instabilities that have gen-
erated the background error. The aim of ensemble per-
turbations systems that are part of the forecast practice
is to sample the initial error probability density function

so as to capture the structure of growing errors. The
importance of the flow-dependent instabilities was rec-
ognized by Kalnay and Toth (1994) who used bred vec-
tors to reduce the errors of the day in the analysis cycle.
Using time-dependent statistics to obtain a reliable es-
timate of the background error covariance matrix is at
the basis of the recently developed techniques known
as ensemble Kalman filters (EKFs; Evensen and van
Leewuen 1996; Hamill and Snyder 2000; Houtekamer
and Mitchell 2001).

The rapid progress in the operational implementation
of advanced data assimilation is founded upon the the-
oretical development of variational- and sequential-es-
timation approaches. The connection between optimal
interpolation and 3D variational assimilation (3DVAR),
and Kalman filter and 4D variational assimilation
(4DVAR) are now well established (Ghil 1989; Ide et
al. 1997; Daley 1991; Kalnay 2002; Bennett 2002; Ubol-
di and Kamachi 2000).

Basic questions to be addressed through data assim-
ilation and observation system simulation experiments
(OSSE) concern

1) the observability of the system, that is, how many
observations are necessary in a given time interval
to determine its state;

2) the propagation of information from data-dense to
data-sparse regions.

Precise statements of the problems can be found in
Ghil and Malanotte-Rizzoli (1991), and a wealth of
quantitative observability results is reviewed in Ghil
(1997). To mention just a few, Todling and Ghil (1994)
and Ghil and Todling (1996) have shown for a baro-
tropic and baroclinic, linear 2D model that one obser-
vation per known unstable pattern is sufficient to track
the solution, but the need for a very small number of
observations has also been demonstrated in strongly
nonlinear models. Another important finding (Patil et
al. 2001) is that ensemble perturbations frequently
evolve into locally low-dimensional subspaces.

Issues related to propagation of information, in par-
ticular how data density and advection influence the
estimation error covariance, were covered by Ghil et al.
(1981).

The basic idea behind the method that we propose
consists in making corrections to the background that
are confined to the unstable subspace, so that the anal-
ysis increment has the same spatial structure as the dom-
inant instabilities of the system. Because the OAF cycle
is a system forced by observations, we will construct
ensemble perturbations consistent with the equations de-
scribing its stability. Once the unstable vectors, which
we refer to as assimilating vectors, have been identified,
their amplitude is obtained by minimizing the distance
of the analysis solution from the observations.

In an adaptive observations context, this involves two
steps.
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1) Find the geographical area where observations are
needed in order to reduce the actual analysis error,
that is, errors that could grow from uncertainties
present in the previous analysis. To this end, ensem-
ble perturbations are used to track the instabilities
that are growing at a particular time in a particular
area along the OAF cycle.

2) Use the data from standard and additional obser-
vations in combination with the dynamical, rather
than statistical, information on the structure and
growth of background errors to reduce the analysis
error and, at the same time, to control the instabilities
that are going to subsequently affect the forecast.

In this paper we will develop the formalism in the
general context of an arbitrary number of observations
and ensemble perturbations. The 3DVAR cost function
is minimized, but the analysis increment is confined to
the unstable subspace of the OAF cycle solution. The
estimate of the background error covariance is obtained
on a dynamical rather than statistical basis.

The procedure is then implemented in the simple con-
text of the 40-variable model of LE, suitable for the
statistical evaluation of the comparative performance of
adaptive observation strategies. For comparison with
previous results, we make use of a simplified analysis
solution with a single adaptive observation and a single
assimilating vector at each analysis time. The merits of
the present targeting-assimilation method are demon-
strated by the remarkable improvement to the analysis
and forecast that is achieved.

We then discuss the stability of control solutions with
and without forcing by standard and adaptive obser-
vations. We argue that a negative growth rate can be
considered a necessary condition for convergence to the
truth. The leading exponent of different OAF schemes
is computed in the LE model and suggested as a criterion
to estimate the relative efficiency of assimilation meth-
ods and adaptive observation networks.

2. The Lorenz and Emanuel model and targeting
strategies: Previous results

The model is a low-order chaotic system (Lorenz 1996),
introduced by LE for the study in question and exploited
by several authors for the same purpose. Its variables x( j),
j 5 1, J, represent the values of a meteorological quantity
at equally spaced geographic sites along a latitudinal circle.
The evolution is governed by

d
x 5 (x 2 x )x 2 x 1 F, (1)j j11 j22 j21 jdt

with periodic conditions on the domain.
The nonlinear quadratic terms in (1) simulate advec-

tion, the linear term represents dissipation, and F is a
constant external forcing. The time step used by LE is
equal to 0.05 and corresponds to 6 h if dissipative decay
time in model units is interpreted to be 5 days. The

number of points in the cyclic grid is 40. A trajectory
obtained by integrating the system equations with forc-
ing F 5 8.0 is considered to be the true evolution of
the physical system. A systematic model error is as-
sumed to affect the forecast and is introduced by inte-
grating the model equations with a slightly different
forcing, F9 5 7.6.

The experiments designed by LE to evaluate the rel-
ative merits of the various targeting strategies consist
of idealized observation system simulations. Standard
observations are located over land (grid points 21–40)
at analysis times (every 6 h). One supplementary ob-
servation is located over the ocean, at one of the grid
points from 1 to 20. All observed values are obtained
by adding an observational error to the true value; the
observational error is normally distributed with zero
mean and standard deviation s 5 F/40 5 0.2. The anal-
ysis is obtained from the first guess by replacing the
background values with the observed values at the sites
of the standard and of the single adaptive observations.

From the numerous tests performed by LE, three main
targeting strategies turned out to give the best results:
multiple breeding (LE-MB), singular vectors (LE-SV),
and multiple replication (LE-MR), with the last one out-
performing all the other methods. These strategies are
variants of methods used for generating perturbations
in ensemble forecasting systems that are discussed at
length in the meteorological literature. The trajectory
that is perturbed is the control, that is, the result of the
complete OAF procedure. The site to be targeted is the
one where maximum background error is estimated to
occur based on the difference between the control and
the perturbed trajectories of the ensemble.

In LE-MB each perturbation vector was renormalized
every 6 h by setting the sum of the squares of its com-
ponents equal to the initial value. LE-MR is a modifi-
cation of LE-MB, in which an additional error (with the
same distribution as the observational error) was intro-
duced in the observations to be assimilated in the per-
turbed trajectories. In LE-MB and in LE-MR the tar-
geted site is the one where the sum, over an ensemble
of 15 perturbations, of the squares of the perturbation
components attains its maximum value. In LE-SV the
targeted site coincides with the largest component of
the most rapidly growing perturbation introduced 10
days earlier. Lorenz and Emanuel (1998) adopted final,
rather than initial, singular vectors and chose 10 days,
which might be considered a rather long optimization
time, because these choices were found to produce the
best results.

The supplementary observation was assimilated in
all, perturbed and unperturbed, analysis. This is an im-
portant feature common to all strategies tested by LE
that we will retain in our formulation.

Because of the choices made in the design of the
experiments (in particular the optimization time and se-
lection of the final leading SV), a certain similarity be-
tween LE-MB and LE-SV could be expected. For fur-
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FIG. 1. Twenty-year-average analysis and forecast error from the
multiple replication experiment with one adaptive observation of LE
as a function of the spatial coordinate and forecast range. Land, with
standard observations, is on the eastern half of the domain; the west-
ern side is the ocean, where a single targeted observation is located.
The analysis error over land is, by definition, equal to the rms ob-
servational error (50.2) and gradually increases to reach, at ocean
grid point 9, a value of about 1.5, which remains almost constant
within the eastern half of the ocean domain (grid points 9–20). The
frequency of observation as a function of the site follows a pattern
very similar to that of the analysis error, with approximately two-
thirds of the adaptive observations being uniformly distributed over
the eastern half of the ocean domain.

ther details on the implementation of these methods, we
refer the reader to the original paper.

The results of LE-MB and LE-SV are similar, but
very slightly better for LE-SV. A more significant im-
provement is obtained by LE-MR. Figure 1 reproduces
the results of LE-MR obtained from a 20-yr rerun of
their experiment. The average analysis and 10-day fore-
cast errors are shown for each (ocean and land) site.
Lorenz and Emanuel (1998) interpret the success of mul-
tiple replication as being due to its ability to diversify
the perturbations, providing a richer variety of error
structures with the same likelihood of representing the
true error.

Other authors have used the LE model to test targeting
strategies. Berliner et al. (1999) adopted a statistical
design to find the optimal location on the basis of the
esimated forecast error covariance matrix at a desired
future time.

Hansen and Smith (2000) applied a 1024-member
ensemble Kalman filter assimilation scheme, combined
with MB and SV and obtained a remarkable reduction
of the analysis and forecast error. An important conclu-
sion of their work is that, in the limit as the analysis
error approaches zero, the information about future in-
stabilities becomes most valuable. In fact, when the ob-
servational error is reduced (by a factor of 16 with re-
spect to LE), the adaptive observation strategy based
on future singular vectors was shown to outperform
multiple breeding, with bred vectors computed in the

past. It should be noted also that these authors used a
scalar product based on the inverse of the analysis error
covariance matrix, as estimated by the ensemble tech-
nique.

3. Formulation of the approach to targeting and
assimilation of adaptive observations

The building blocks of our approach are the follow-
ing.

1) As mentioned in the introduction, other authors have
shown that the assimilation of additional observa-
tions is not necessarily beneficial to the forecast and
can, in some cases, lead to an increase of the forecast
error. Usually, only some components of the state
vector are observed: in the simplest case these com-
ponents are represented by meteorological variables
at particular locations where observations are taken.
Considering the simple example of an assimilation
scheme that replaces background values by observed
values at observational sites, one can easily see that,
although the analysis error is reduced, the same may
not be true for the projection of the analysis error
on the most unstable vectors. In such a case, a re-
duction of the forecast error cannot be expected.
Therefore, our first goal is to estimate and reduce
the projection of the actual analysis error onto the
most rapidly growing perturbations.

2) A second point is in regards to the nature of the
error. The errors in the background that one wishes
to reduce by introducing adaptive observations are
errors that were free to grow in the OAF cycle due
to the lack of data; in fact, at sites where regular
observations are taken, errors can grow only during
the time span between analysis. In data-void areas,
instead, the unstable structures are free to grow for
longer time periods during the OAF cycle. Errors
that were present at some stage in a particular control
trajectory (the result of the OAF procedure), after
some sufficiently long time during which many anal-
ysis and forecast steps are performed, always con-
verge to some typical structures that depend both on
the particular analysis and forecast process and on
the flow-dependent instabilities. ‘‘After the growing
modes have grown and the decaying modes have
decayed’’ the background error ‘‘has approximately
the structure of a combination of the more rapidly
growing modes rather than a combination of all
modes’’ (LE).

If the analysis increment is a linear combination
of these structures with amplitude coefficients de-
termined by a fit to the observations, the correction
to the analysis will be consistent with the dynamical
evolution of the actual error: along the unstable di-
rections, the attractor is continuous and one can
move from one state to another state that also belongs
to the attractor and lies on a nearby trajectory (Lo-
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renz 1984). The correction will not only be consis-
tent, but will also minimize subsequent error growth;
in fact, super-Lyapunov growth has been shown to
be associated with transient effects due to the non-
orthogonality of locally stable and unstable vectors
(Lacarra and Talagrand 1988; Trevisan and Pancotti
1998).

3) The third point concerns the identification of the un-
stable subspace of the OAF system, which is forced
by observations, and to this end the perturbed tra-
jectories must also be subject to the same forcing, a
feature present in LE and in ensemble Kalman filters.

4) A final important point concerns observability. This
property is strictly connected both to the stability of
the solution and to the flow of information through-
out the domain. The number and frequency of ob-
servations necessary to counteract the instabilities
are proportionally related to their growth rate and to
the dimensionality of the unstable subspace. The dis-
tribution and specific positioning of observations
with respect to the growing error structures play an
important role in the overall picture.

4. Analysis solution: Confinement in the unstable
subspace

Assume that, by proper ensemble techniques, we are
able to find N independent vectors that describe the
unstable subspace or at least the leading instabilities of
the OAF system. The background error has an important
component in this subspace and can be expressed as a
linear combination of the unstable vectors, referred to
as assimilating vectors. By assimilating a sufficiently
large number M of observations, M $ N, we can esti-
mate the component of the error that projects on the
unstable subspace and eliminate it from the analysis.

Let the set of orthonormalized unstable vectors be
given by ek, k 5 1, N, and let yo be the M-dimensional
observation vector. The analysis increment confined to
the unstable subspace spanned by the ek is given by

N

a a bdx 5 x 2 x 5 a e [ Ea, (2)O k k
k51

where xa is the analysis, xb the background state, E is
the I 3 N matrix whose columns are the ek vectors, and
a is the vector whose components are the coefficients
ak to be determined.

In view of (2), the cost function for an incremental
(linearized) 3DVAR analysis reads

b o T b o21J 5 (Hx 1 HEa 2 y ) R (Hx 1 HEa 2 y )
T T 211 a E B Ea, (3)

where H is the (Jacobian of the) observation operator,
and B and R are the covariance matrices of the back-
ground and observational error, respectively.

Setting =aJ 5 0, we get
b oT T 21 T 21E H R (HEa 1 Hx 2 y ) 1 E B Ea 5 0. (4)

The solution is
21T 21 T T 21 T T 21a 5 (E B E 1 E H R HE) E H R 3

o b(y 2 Hx ) or (5a)
a 21 21 21T 21 T T T 21 T Tdx 5 E(E B E) E H [HE(E B E) E H 1 R] 3

o b(y 2 Hx ). (5b)

We will consider the two following cases.

a. The background term in the cost function is
neglected

The solution obtained by minimizing the cost function
(3) after dropping the last term is

21 o bT T 21 T T 21a 5 (E H R HE) E H R (y 2 Hx ). (6a)

When M 5 N, the matrix HE is square and in relevant
cases, invertible and the solution simplifies to

a 21 o bdx 5 E(HE) (y 2 Hx ), (6b)

where the matrix R has dropped out and the analysis
exactly fits the observations.

If, in particular, we consider the case of a single ob-
servation N 5 M 5 1, then E consists of a single column
vector e1 and the analysis increment is given by

o by 2 x (iobs)
adx 5 e , (7)1e (iobs)1

where the observation operator was simplified by the
assumption that one scalar component of the state vector
is observed. Here, xb(iobs) and e1(iobs) indicate the
components of the vectors xb and e1 at observation point
iobs.

This simple case (N 5 1) is readily interpreted. The
correction to the background has the structure of the
unstable perturbation and an amplitude to exactly fit the
observation. In the hypothesis that the background error,
at a given time, has the same structure as the assimilating
vector, that is, it points in the direction of e1, a single
exact observation would be sufficient to reduce the anal-
ysis error to zero.

b. The background error is confined within the N-
dimensional subspace

If E is assumed to span the N-dimensional subspace
with N , I, where the background error hb is confined,
that is,

bh 5 Eg, (8a)

then its covariance matrix

TB 5 EGE (8b)

is of rank N and is not invertible.
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However, the N-dimensional basis of the unstable
subspace E, together with its orthogonal complement,
defines a basis on the whole space. In this new basis,
the background error covariance matrix can be seen as
a 2 3 2 block matrix, where only the first (upper and
left) block has nonzero elements, the (N, N) invertible
matrix G, which represents the background error co-
variance matrix in the N-dimensional subspace. A re-
duced-order cost function for this problem can be writ-
ten that is consistent with the strong constraint (2) that
the analysis increment is confined in the unstable sub-
space.

The cost function becomes
b o T b o21J 5 (Hx 1 HEa 2 y ) R (Hx 1 HEa 2 y )
T 211 a G a, (9a)

and the solution of the minimization problem reads
a 21 o bT T T Tdx 5 EGE H (R 1 HEGE H ) (y 2 Hx ). (9b)

The same solution can be obtained by imposing (8a)
in the derivation of an optimal interpolation or Kalman
filter analysis, and it does not depend on the particular
scalar product chosen.

Expression (8b) can be seen as a (suboptimal) sub-
stitute of the Riccati equation for covariance evolution
in Kalman filters. In fact, (9b) formally coincides with
the analysis solution used in ensemble Kalman filter
approaches based on reduced-order background matri-
ces. For an extensive discussion and review of reduced-
order filter techniques see Kalnay (2002).

Because we have identified the basis vectors E with
the (leading) unstable directions, the present formulation
suggests a simplified approach to reduced-order Kalman
filter. In contrast with ensemble Kalman filters, where
the background error covariance matrix is estimated
from the dispersion of the ensemble members, in our
approach we assume to know the unstable directions of
the system. The order reduction is obtained by esti-
mating only a (small) number N of unstable vectors.
Given the local (leading) exponents, the analysis error
projection onto the corresponding unstable directions
amplifies accordingly and this completely determines
the background error covariance matrix in the (reduced)
subspace (8b).

In particular, when N 5 1, (8b) reduces to
2 TB 5 g e e ,1 1 1 (10)

where g1 is the expected component of the background
error in the direction of e1.

With this prescription, M 5 1 and R 5 s 2I, (9b) reads

o be (iobs)[y (iobs) 2 x (iobs)]1adx 5 e (11)12 2 22[e (iobs) 1 s g ]1 1

to be compared with (7). Kalnay and Toth (1994) used
a similar expression to account for the background er-
rors in the direction of bred vectors.

In the application to the 40-variable model, we will
make use of (7) rather than (9b) or (11) to directly
compare our results with those of LE. Use of (9b) or
(11) would in fact require an estimate of G or g1 in
addition to the associated vectors that can be easily ob-
tained from the evolution of analysis error in the cor-
responding subspace and will be the subject of future
investigation.

5. Application to the LE model of the targeting–
assimilation method

Focusing our attention on the problem of adaptive
observations, we consider the application of the method
to the LE model, where some simplifications are in or-
der. For comparison with previous results, only one
adaptive observation is made at each analysis time and
a single assimilating vector is used. The observation is
placed at the location where the current leading unstable
structure e1 has amplified the most. As a consequence,
the analysis increment is maximum at the observation
location.

The construction of perturbations aimed to capture
the unstable directions to be used in the assimilation is
an important and delicate point. As further discussed in
section 6 and appendix B, which deal with its stability,
in the OAF system, forced by observations, the growth
of errors and the dimension of the unstable subspace
are reduced. For consistency, the perturbed trajectories
must also be forced by observations.

The simple and efficient procedure used to identify
the unstable directions is similar to breeding, except that
all perturbed trajectories are subject to the same OAF
cycle as the control, as in LE. As such, the perturbations,
whose growth is constrained by the observation–assim-
ilation process, will take up the structure of the insta-
bilities of the OAF solution.

In the present application, a perturbation is introduced
every 6 h by adding to the control analysis a random
error at each grid point, and is grown for 10 days (40
observation times) before being used. The perturbation,
after being used, is discarded and a new one is intro-
duced.

The adaptive observation is located at the site where
the current perturbation vector has its largest compo-
nent. The current perturbation, that is, the perturbation
inserted in the analysis 10 days earlier, is used to es-
timate the present most unstable vector e1 (the assimi-
lating vector) and to assimilate the observation by ap-
plying (7) to the control trajectory and to the remaining
39 perturbed trajectories.

Because M 5 N 5 1, the unperturbed and the per-
turbed analysis are all equal to the observed value at
the targeted location (all perturbations have a zero com-
ponent at the observation site). At the same time, (7)
implies that the analysis increment at surrounding points
is nonzero, but has the same spatial structure as the
current perturbation: if the observation was perfect, er-
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FIG. 2. Same as Fig. 1, but using the observation–assimilation
method presented in the text. The analysis error grows from 0.2 to
0.6 between grid points 1 and 5; and is approximately constant
throughout the ocean domain, except for the easternmost grid points
(15–20), where it reaches a maximum of 0.8. Following the spatial
pattern of the analysis error quite closely, the frequency of obser-
vation is almost constant throughout most of the ocean domain, except
for a few grid points near the east and west coast, where we find the
smallest and the largest number of observations, respectively.

FIG. 3. Same as Fig. 2, but without model error (F 5 8) and with
a perfect adaptive observation. The analysis error over the ocean is
everywhere smaller than over land, being on average less than 0.1.
The frequency of observations is similar to that of the expt of
Fig. 2.

rors in the direction of e1 would be completely elimi-
nated from all, perturbed and unperturbed, trajectories.

It is worth at this point to recall that the main dif-
ference between our experiment and those of LE is in
the use of (7) to assimilate targeted observations. We
have conducted several additional experiments whose
results will not be shown. First, we varied the breeding
time from 1 to 20 days; provided the breeding time is
at least 3 days, the results are not very sensitive to this
parameter. We also implemented the different pertur-
bation methods used by LE and referred to in section
2 as LE-MB, LE-SV, and LE-MR. The differences in
the results among the various experiments are only mi-
nor if compared with the substantial improvement ob-
tained using any perturbation strategy in combination
with (7).

Figure 2 shows results analogous to those of Fig. 1,
but obtained with the procedure described above and
making use of (7). The improvement in the ocean area
is very significant: comparing Fig. 2 with Fig. 1, it is
not until 3 days into the forecast that we find, in the
statistics, errors as large as those present in the analysis.
In the present experiment, a single observation over the
ocean is sufficient to reduce both the analysis and fore-
cast error to such an extent to make it comparable to
the error over land. The success of the experiment is
particularly encouraging in view of the fact that we have
used a single observation and a single assimilating vec-
tor, and one can expect that the error will be further
reduced if a larger number of vectors and observations
is used. On the other hand, if assimilations are made at
relatively short time intervals, the various unstable per-

turbations that, at a certain time and location, contribute
to growth of the background error are continuosly being
reduced. The number of vectors taken into account and
the time interval between corrections can in fact be
considered mutually compensating factors.

We now turn to the question of whether the number
of the unstable directions and observations are sufficient
for the system to be observable, having in mind that
this property depends upon various factors, such as the
instability growth rate, the dimension of the unstable
subspace, and the frequency of observations. In order
to investigate this point we performed an experiment
under perfect model conditions and a single perfect
adaptive observation over the ocean. In this experiment,
apart from the initial condition, the imperfect obser-
vations over land constitute the only source of error.

The results of Fig. 3 show a major improvement of
the analysis and forecast over the ocean and demonstrate
the possibility of controlling local unstable growth in
this model by means of the single observation over the
data-void region. Now it is the correct information from
the simple perfect ocean observation that propagates
westward, leading to a significant reduction of the error
over land throughout the entire forecast range.

It needs to be mentioned that in the present model it
was necessary to confine the region of influence of (7)
by applying a masking function to the perturbation e1

in order to avoid an instability that appeared in the so-
lution under particular circumstances. We refer to ap-
pendix A for details on this point.

6. Estimating the optimality of observation–
assimilation schemes from the stability of the
solution

In the present section we study the stability of the
solution of observation–assimilation schemes. We ex-
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FIG. 4. Average growth rate of the leading unstable vector as a
function of time for the following solutions: no observations, standard
observations over land, standard observations and one adaptive ob-
servation LE-MR experiment, and standard observations and one
adaptive observation with the observation–assimilation scheme pre-
sented in the text. Averaging starts at the time when a set of initially
arbitrary perturbations have approached each other.

pect that the ability of a given scheme to control error
growth and force the solution to remain close to the true
trajectory should be reflected in a reduced divergence
rate.

The truth is represented by a solution of the dynamic
equations governing our model atmosphere; this solu-
tion is unstable with respect to infinitesimal perturba-
tions of the initial condition. A particular observation–
analysis scheme provides us with another solution, re-
ferred to as the control, which is the outcome of the
complete analysis cycle. Integration of the original dy-
namic equations between successive analysis times pro-
vides the background, but the analysis solution is then
‘‘forced’’ to remain close to the observations. In the
scheme that we have proposed, the forcing toward the
observations is done in a way consistent with the error
dynamic evolution, so that the corrected analysis can
be viewed as a state that belongs to a nearby trajectory
of the system.

Thus, the control solution can be regarded as the so-
lution of a set of forced equations that is more complex
than the original model. The solution of such equations
may itself be sensitive to initial conditions, but, as can
be anticipated, its stability properties may very well
differ from the stability properties of the original system.
Following Ghil et al. (1981), who first introduced this
distinction, and Ide et al. (1997), we outline the stability
problem of a system with and without data-forcing in
appendix B, which provides the framework for the fol-
lowing discussion.

If the control solution is stable, then starting with
slightly different initial conditions, compatible with the
observational error and treated exactly as the control,
we will in practice end up with one and the same so-
lution. This does not mean that the solution will con-
verge to the truth, in view of imperfections in the model
and in the analysis scheme or in the case that the error
in the initial condition is not sufficiently small.

If, instead, the control solution is unstable, it will be
at all times dependent on the initial condition and will
represent but one of the possible solutions of the ob-
servation–analysis scheme. Even with a perfect model
and perfect observations we will never know which one
of the possible solutions is the truth.

We can thereby consider the stability of the control
solution as a necessary, not sufficient, condition for con-
vergence to the truth. With regard in particular to an
assimilation scheme including adaptive observations, its
ability to target areas where errors tend to be large and
fast growing may eventually halt their growth and sub-
sequently keep it within bounds.

The rate of growth of perturbations of the control can
give us a measure of the efficiency of a given scheme
to keep the error small: a scheme that renders the control
stable will presumably perform better also in reducing
the actual analysis error. Thus, the estimate of the
growth rate of perturbations of the control provides us
with a simple means of comparing the potential effi-

ciency of different schemes and constitutes a valid al-
ternative to the statistical evaluation of the actual anal-
ysis error. In fact, the latter is feasible only in idealized
experiments in which the true evolution of the system
is assumed to be known, or by means of complex pa-
rameter estimation algorithms (Dee et al. 1985; Navon
1997).

In the context of the present experiments with the LE
model, by comparing different observation–analysis
schemes, we will show that, indeed, a reduction of the
growth rate corresponds to a reduction of the analysis
error obtained with that scheme.

The rate of growth of perturbations are computed in
the usual manner. A perturbed trajectory is generated
by adding a small error, randomly drawn from the same
distribution as the observational error to the initial con-
dition. The perturbation is renormalized at regular time
intervals so that errors evolve linearly. Thus, when we
apply this procedure to the original equations and com-
pute the average growth rate, we recover the leading
Lyapunov exponent of the system. Analogously, to es-
timate the stability of the solution of a given OAF
scheme, we add an error to the control analysis and
compute the growth rate of the small, linearly evolving
perturbation. In such a case, the perturbation is kept
small by renormalizing its amplitude, and the perturbed
trajectory is subject to the same observation–analysis
procedure as the control trajectory of the given scheme.
Whether only standard or adaptive observations are
available, they are assimilated in the perturbed trajectory
in the same way as they are assimilated in the control
at each analysis time. Figure 4 shows the linear growth
rate, averaged along the trajectory, of perturbations to
the following solutions: the original system, the control
solution with standard observations over land, the con-
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trol solution with the adaptive observation multiple rep-
lication scheme of LE, and the solution with the adaptive
observation–assimilation scheme that we have present-
ed. The growth rate corresponding to the solution with
standard observations over land is smaller than the Lya-
punov exponent of the free system but is still positive.
The addition of one adaptive observation is sufficient
to render the control solutions stable both in the MR
experiment of LE and in our experiment, but the rate
of convergence is much faster within our scheme. We
can thus regard the efficiency of a particular method in
reducing the actual analysis and forecast errors observed
in the statistics as a consequence of the stability of its
solution.

7. Conclusions

The main features of the formulation of the data as-
similation process within an OAF cycle presented in
this paper are the following.

1) The correction to the background state (the analysis
increment) is confined to the subspace of the dom-
inant unstable directions of the system, that is, of the
OAF routine. The set of coefficients that provide the
analysis solution is determined by minimizing the
3DVAR cost function. A simplified solution is ob-
tained in the case of a single unstable direction and
a single observation.

2) The unstable directions of the OAF system solution
are estimated by breeding perturbations subject to
the same observation–analysis–forecast process as
the control solution.

3) A distinction is made between the stability of the
forecast solution and the stability of the analysis-
cycle solution, the forcing imposed by the obser-
vational constraints having the effect of reducing the
instability of the solution. The growth rate of the
leading instability mode within a particular OAF
scheme could be compared with that of the original
model equations or of other schemes. It is suggested
that a negative growth rate is a necessary condition
for convergence to the truth, and that the minimi-
zation of the exponent can be considered a criterion
to estimate the optimality of observation and assim-
ilation systems.

4) The question about the observability of the system
is posed in terms of the number of observations nec-
essary to determine the state of the system, given
the number of unstable structures that develop lo-
cally in space during a certain time interval.

The results of the application to the LE 40-variable
model with standard observations over land and one
adaptive observation over the ocean have shown the
following.

1) Using our method to assimilate the adaptive obser-
vations in a 20-yr rerun of the observation system

simulation experiment of LE, average analysis errors
over the ocean were reduced by 50%. Only after 3
days into the forecast, they became as large as those
present in the analysis. This improvement was
achieved using the same amount of information and
practically no additional computational cost.

2) A perfect model experiment with a perfect adaptive
observation further demonstrated the success of the
deterministic assimilation scheme: with a single ob-
servation over the oceanic data void region covering
half of the domain it was possible to determine the
state more accurately than over land. The correct
information over the ocean propagates eastward with
beneficial effects to the forecast over land.

3) The leading exponent of the scheme that we have
implemented has a large negative value, confirming
the efficiency of the proposed adaptive observation
assimilation procedure in controlling error growth
by stabilizing the solution.

The readers are cautioned about the limited appli-
cability of the LE model to realistic data assimilation.
However, the questions we have posed about the sta-
bility and observability of OAF systems can be ad-
dressed, by the same algorithmic approach, in more re-
alistic models in which some of the qualitative conclu-
sions can still be expected to hold. The reduction of the
number and value of positive exponents and conse-
quently of the number of observations necessary to con-
trol the instabilities in the data-forced OAF system
opens some optimistic perspective also for the real world
assimilation problem.
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APPENDIX A

Use of a Modulating or Masking Function to
Regionalize the Assimilating Vector

In the application of the scheme to the LE model with
a single observation and a single unstable perturbation
at each analysis time, it was necessary to ‘‘regionalize’’
the assimilating vector correction in order to prevent
uncontrolled error growth. This problem, however, oc-
curred only in a few instances and in particular circum-
stances, in the 20-yr assimilation experiment that was
run. In such cases, the solution diverged from the truth,
making successive corrections based upon perturbations
of the control totally erroneous. Close inspection re-
vealed the cause of the problem to be associated with
the following concurrence of events. The perturbations
used in sequence to target and assimilate the observation
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appeared to be the result of the superposition of different
modes and showed spatially separated maxima or min-
ima; also the background error appeared to be the su-
perposition of the same modes, but with different am-
plitudes, occasionally with the opposite sign. While the
observation and correction in correspondence to the
maximum perturbation amplitude led, as in all other
cases, to a reduction of the error in that area, the pres-
ence of the secondary peak led to a correction with the
wrong sign. When this event occurred several times in
a row, along the cycle, the solution became unstable.

For this reason, it was chosen to regionalize the cor-
rection. The current perturbation, that is, the assimilat-
ing vector is modulated by a function that goes to zero
outside an area surrounding the observation. Among the
many possible choices, we decided to use a Gaussian
function. After some trials, the decay scale was set equal
to three grid points. With this value, the region of in-
fluence of the assimilation correction is sufficiently wide
that the results, compared with those obtained rejecting
the few unstable cases that were found during the as-
similation, are not significantly altered by the applica-
tion of the masking. It is important to note that the value
chosen allows the assimilation of a single observation
to affect one-third of the whole ocean area, and that
correlations are active on a much larger distance than
what is usually done in space analysis.

APPENDIX B

The Stability of the Data-Forced System

The time evolution of a real system is approximated
by the nonlinear model equations

dx̂
5 M [x̂], (B1)

dt

where x̂ indicates the estimate of the true state xt. In
the sequential estimation approach, the true state is as-
sumed to evolve according to a stochastic differential
equation

t tdx 5 M[x ] · dt 1 dh, (B2)

where h, the model error, is a Wiener process (Ide et
al. 1997).

In the absence of data, the evolution of perturbations
is obtained by linearizing the equations about the esti-
mated trajectory

ddx̂
5 M[x̂] · dx̂. (B3)

dt

When data are available, the assimilation process
forces the estimated trajectory toward the truth.

Observations in general are incomplete and affected
by errors

o t oy 5 H[x ] 1 « , (B4)

where «o represents the observational error, including that
specific to the observation operator H.

If observations are assimilated at intermittent times tk,
the evolution of the data-forced system is given by

dx̂
o5 M [x̂(t)] 1 d(t 2 t ) · K · {y 2 H [x̂(t )]},O kk k k kdt k

(B5)

where Kk is the gain matrix and the assimilation has the
character of an impulsive forcing term.

The perturbative equations of the forced system (B5)
are

ddx̂
5 M[x̂] 2 d(t 2 t ) · K · H [x̂(t )] ·dx̂.O k kk k5 6dt k

(B6)

If the observation distribution and assimilation are
continuous in time, the forced system evolution be-
comes

dx̂
o5 M [x̂] 1 K(t) · {y (t) 2 H [x̂(t)]}, (B7)

dt

where K(t)[ø(1/dt)Kk] represents the time distribution
of the gain matrix.

The evolution of the perturbations of the continuously
forced system (B7) is given by

ddx̂
5 {M[x̂] 2 K(t) · H[x̂(t)]} · dx̂. (B8)

dt

If the real system is chaotic, the divergence of nearby
trajectories is reproduced by the perturbative equations
(B3) of the free solution. In the data-forced system, the
assimilation constrains the trajectory to remain close to
the truth and counteracts the tendency of perturbations
to amplify. As a result of the stabilizing effect of the
observational forcing term in the linearized equations
(B6) or (B8), the perturbations may either grow less
rapidly or decay.
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