2°PRINCIPIO DELLA TERMODINAMICA – CICLO DI CARNOT

Mentre il 1° principio rappresenta la conservazione dell'energia, il 2° principio riguarda la massima quantità di calore che può essere convertita in lavoro.

Alcune definizioni:

<u>Processo ciclico</u>: sequenza di operazioni durante le quali la sostanza cambia stato ma che alla fine la riporta nella stessa condizione iniziale. Essendo l'energia interna una funzione di stato, allora du = 0 in un processo ciclico, nel quale si bilanceranno il lavoro ed il calore

<u>Trasformazione reversibile</u>: se ogni stato del sistema è in equilibrio in modo che si possa sempre invertire la direzione di ogni cambiamento infinitesimo, riportando la sostanza e l'ambiente al loro stato originale

Motore termico: macchina che svolge lavoro assorbendo calore

Efficienza di un motore termico che durante un ciclo assorbe calore Q_1 e ne rilascia una quantità Q_2 :

una quantità Q_2 : $\eta = \text{lavoro svolto/calore assorbito} = (Q_1 - Q_2)/Q_1$ Motore ideale identificato da Carnot

Il CICLO DI CARNOT si compone di 4 passaggi:

- 1) compressione adiabatica
- 2) espansione isoterma
- 3) espansione adiabatica
- 4) compressione isoterma

Lavoro netto = area contenuta nel grafico sul diagramma p-V

La trasformazione è ciclica, quindi il lavoro deve essere uguale a Q_1 - Q_2 Il motore fa perciò lavoro trasferendo calore da un corpo più caldo ad un corpo più freddo

2° PRINCIPIO: "solo trasferendo calore da una sorgente calda ad un corpo più freddo, il calore può essere trasformato in lavoro in un processo ciclico"

Teorema di Carnot: si può dimostrare che nessun motore può essere più efficiente di un motore reversibile che lavora tra gli stessi limiti di temperatura; inoltre tutti i motori reversibili che lavorano tra gli stessi limiti di temperatura hanno uguale efficienza.

Per un ciclo di Carnot:
$$\frac{Q_1}{Q_2} = \frac{T_1}{T_2}$$

OSS1: Esempio di motore termico: motore a vapore dove le sorgenti sono la caldaia e il condensatore e la sostanza di lavoro è l'acqua (liquida o vapore). L'acqua si espande assorbendo calore e fa lavoro spingendo il pistone

OSS2: Il ciclo di Carnot può essere invertito ed il motore funziona come <u>refrigeratore</u>, sottraendo calore ad un corpo freddo e trasferendolo ad un corpo caldo. Per fare ciò è necessaria la presenza di un'unità esterna (motore elettrico)

Questo conduce ad un'altra formulazione del 2° Principio:

"Il calore non passa spontaneamente (cioè senza che venga fatto lavoro da un agente esterno) da un corpo freddo ad uno caldo durante un processo ciclico

OSS3: Il 1° principio stabilisce un'equivalenza quantitativa tra diverse forme di energia, senza imporre ulteriori restrizioni. Ma mentre il lavoro può sempre trasformarsi in calore completamente, l'inverso non è possibile, e le restrizioni sono dettate dal 2° Principio della termodinamica

ENTROPIA

Le isoterme si differenziano per la T, le adiabatiche per la θ . C'è un altro modo per distinguere due adiabatiche.

Passando con processi reversibili da un'adiabatica ad un'altra seguendo un'isoterma, avrò cessione o assorbimento di calore Q_{rev}. Tale passaggio non è altro che un ramo del ciclo di Carnot, per il quale si è dimostrato che Q/T è sempre lo stesso indipendentemente dall'isoterma scelta, passando da una adiabatica ad un'altra.

Quindi la grandezza Q_{rev}/T può essere presa come la misura della differenza tra due adiabatiche, ed è detta <u>differenza in entropia</u> Incremento di entropia del sistema:

$$dS = dQ_{rev}/T$$

Dal punto di vista matematico: dq non è un differenziale esatto dq/T è un differenziale esatto, quindi dS è una funzione di stato

Primo principio: dq=du+pd α =Tds \rightarrow Tds=du+pd α

Legame entropia- θ : $dS=c_p d\theta/\theta = c_p d\ln\theta$

 $S=ENTROPIA=cp ln\theta + cost$

Trasformazioni ISOENTROPICHE sono a θ costante, cioè ADIABATICHE

OSS1: un ciclo di Carnot non produce variazioni di entropia. Infatti le due trasformazioni adiabatiche avvengono (per def.) a θ costante, quindi sono isoentropiche. Le trasformazioni isoterme producono variazione $Q_2/T_2 - Q_1/T_1$. Ma abbiamo dimostrato che i due contributi sono uguali.

OSS2: Se traccio il ciclo di Carnot su un diagramma T-S, ha una forma rettangolare. Il lavoro Q₂ - Q₁svolto nel ciclo corrisponde all'area del rettangolo.

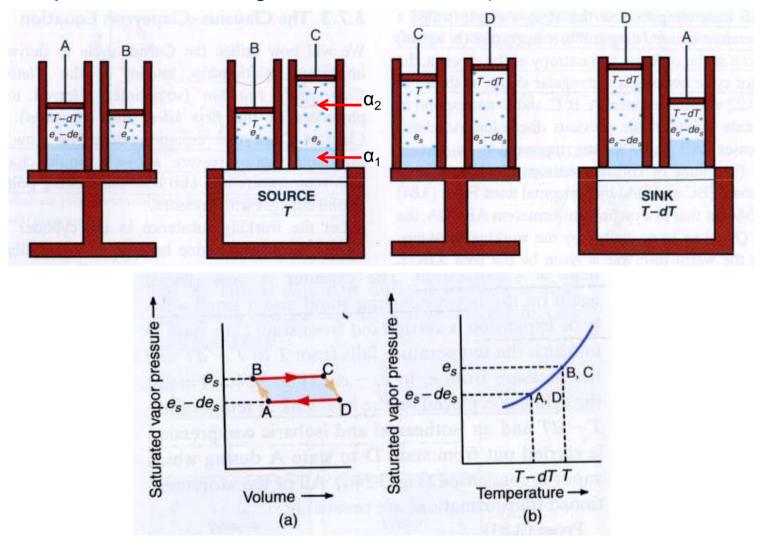
Generalizzazione del 2° Principio

Afferma che per una trasformazione reversibile non c'è cambiamento dell'entropia dell'universo (universo=sistema+ambiente circostante). Quindi se il sistema riceve calore reversibilmente, l'incremento di entropia è uguale al calo di entropia dell'ambiente attorno.

Il concetto di reversibilità è un'astrazione, le trasformazioni naturali sono <u>irreversibili</u> Per un sistema che riceve calore dq_{irrev} alla temperatura T la variazione di entropia NON è dq_{irrev}/T in quanto non esiste più un legame semplice tra dS e dq

Il 2° Principio della Termodinamica dice che l'entropia dell'universo aumenta in seguito a trasformazioni irreversibili.

Quindi generalizzo:


$$\begin{split} \Delta S_{universo} &= \Delta S_{sistema} + \Delta S_{amb.circ.} \\ \Delta S_{universo} &= 0 \qquad \text{per trasformazioni REVERSIBILI} \\ \Delta S_{universo} &> 0 \qquad \text{per trasformazioni IRREVERSIBILI} \end{split}$$

OSS: il 2° principio non può essere provato, ma si suppone sia valido poiché porta a deduzioni in accordo con le osservazioni e l'esperienza

EQUAZIONE DI CLAUSIUS-CLAPEYRON

Utilizzando il ciclo di Carnot si può derivare un'equazione che descrive come varia la pressione di vapore saturo con la temperatura e_s(T)

Suppongo che la sostanza nel cilindro del motore di Carnot sia un liquido in equilibrio con il suo vapore saturo ed eseguo le 4 fasi del ciclo (tutte trasformazioni reversibili).

$$\frac{de_s}{dT} = \frac{L_v}{T(\alpha_2 - \alpha_1)}$$

 L_v = calore latente di evaporazione $\frac{L_{v}}{T(\alpha_{2} - \alpha_{1})}$ $L_{v} = \text{calore latente di evaporazione}$ $\alpha_{2} = \text{volume specifico del liquido}$ $\alpha_{3} = \text{volume specifico del liquido}$ α_1 = volume specifico del liquido

Siccome α_2 (volume specifico del vapore) >> α_1 (volume specifico del liquido):

$$\frac{de_s}{dT} \approx \frac{L_v}{T\alpha_2}$$

Considero che il liquido sia l'acqua in equilibrio con il vapore acqueo saturo $\alpha_2 = \alpha_v$:

$$e_s \alpha_v = R_v T \Rightarrow \alpha_v = \frac{R_v T}{e_s}$$

Sostituisco

$$\frac{de_s}{dT} \approx \frac{L_v}{R_v T^2} e_s \Rightarrow \frac{1}{e_s} \frac{de_s}{dT} \approx \frac{L_v}{R_v T^2} \qquad e_s = Ce^{-\frac{M_w L_v}{1000R^* T}}$$

Numeratore esponenziale: energia necessaria per il cambiamento di fase Denominatore esponenziale: en. cinetica delle molecole (T). Maggiore T, maggiore l'en. cinetica, maggiore l'evaporazione, maggiore sarà es

Risolvendo si ottengono le seguenti espressioni

$$e_s^{water}(T) = 6.11e^{5413.2\left(\frac{1}{273} - \frac{1}{T}\right)}$$

$$e_s^{ice}(T) = 6.11e^{6135.5\left(\frac{1}{273} - \frac{1}{T}\right)}$$

attraverso le quali posso tracciare il diagramma di fase:

Acqua liquida a T<0℃

Punto triplo

curva 1 : acqua e vapore in equilibrio

curva 2a: acqua sopraffusa e vapore in equilibrio

curva 2b: ghiaccio e vapore in equilibrio curva 3 : ghiaccio e acqua in equilibrio

L'acqua pura, se non è a contatto con altri oggetti, rimane allo stato liquido anche quando la

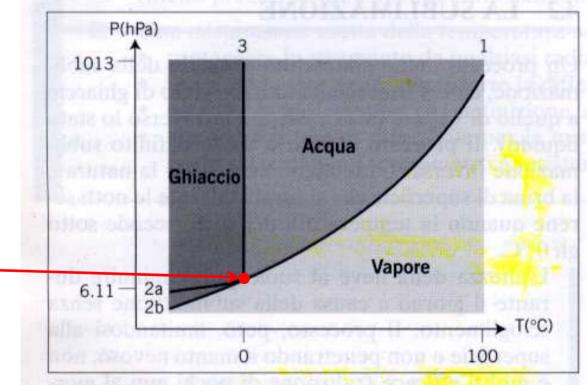
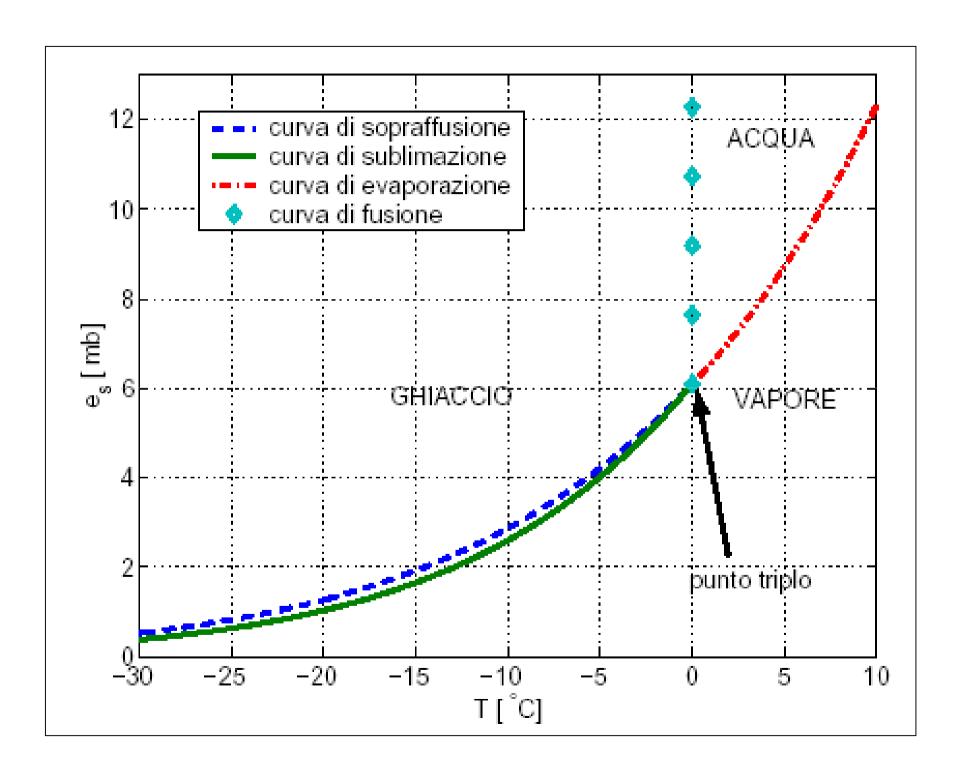
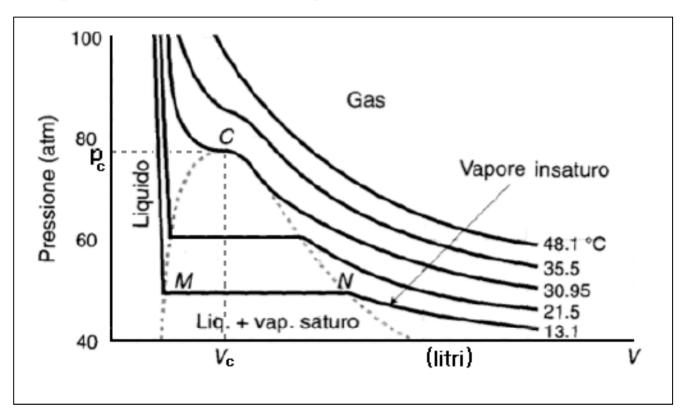




Figura 4.2
Diagramma delle fasi dell'acqua con andamento della pressione del vapore saturo al variare della temperatura.

DIAGRAMMA DI ANDREWS

Il punto C si chiama **punto critico** e rappresenta la massima temperatura a cui la sostanza può trovarsi nella fase liquida, al di sopra di questa temperatura, la sostanza si può trovare solo in stato gassoso. Per l'acqua Tc=374.2℃

All'interno della curva a campana, detta **campana di Andrews** (zona tratteggiata in figura), che sta al di sotto dell'isoterma critica si ha equilibrio e coesistenza di due fasi. Il fenomeno della **transizione di fase** liquido-vapore avviene lungo tutto il tratto a pressione costante entro la campana di Andrews, che va dai punti di inizio ebollizione ai punti di rugiada.